ordermap-1.1.0/.cargo_vcs_info.json0000644000000001360000000000100126440ustar { "git": { "sha1": "aa24bf2d8b5c664d9887b35d051b6836bf9b0ba1" }, "path_in_vcs": "" }ordermap-1.1.0/.github/workflows/ci.yml000064400000000000000000000113731046102023000161540ustar 00000000000000on: push: branches: [ main ] pull_request: branches: [ main ] merge_group: name: CI env: CARGO_TERM_COLOR: always CARGO_INCREMENTAL: 0 jobs: tests: runs-on: ubuntu-latest strategy: matrix: include: - rust: 1.82.0 # MSRV features: - rust: stable features: arbitrary - rust: stable features: quickcheck - rust: stable features: rayon - rust: stable features: serde - rust: stable features: sval - rust: stable features: borsh - rust: stable features: std - rust: beta features: - rust: nightly bench: test build benchmarks steps: - uses: actions/checkout@v4 - name: Lock MSRV-compatible dependencies if: matrix.rust == '1.82.0' env: CARGO_RESOLVER_INCOMPATIBLE_RUST_VERSIONS: fallback # Note that this uses the runner's pre-installed stable cargo run: cargo generate-lockfile - uses: dtolnay/rust-toolchain@master with: toolchain: ${{ matrix.rust }} - name: Tests run: | cargo build --verbose --features "${{ matrix.features }}" cargo doc --verbose --features "${{ matrix.features }}" cargo test --verbose --features "${{ matrix.features }}" cargo test --release --verbose --features "${{ matrix.features }}" - name: Tests (serde) if: matrix.features == 'serde' run: | cargo test --verbose -p test-serde - name: Tests (sval) if: matrix.features == 'sval' run: | cargo test --verbose -p test-sval - name: Test run benchmarks if: matrix.bench != '' run: cargo test -v --benches nostd_build: runs-on: ubuntu-latest strategy: matrix: include: - rust: 1.82.0 target: thumbv6m-none-eabi - rust: stable target: thumbv6m-none-eabi steps: - uses: actions/checkout@v4 - name: Lock MSRV-compatible dependencies if: matrix.rust == '1.82.0' env: CARGO_RESOLVER_INCOMPATIBLE_RUST_VERSIONS: fallback # Note that this uses the runner's pre-installed stable cargo run: cargo generate-lockfile - uses: dtolnay/rust-toolchain@master with: toolchain: ${{ matrix.rust }} target: ${{ matrix.target }} - name: Tests run: | cargo build -vv --target=${{ matrix.target }} --no-default-features cargo build -v -p test-nostd --target=${{ matrix.target }} clippy: runs-on: ubuntu-latest steps: - uses: actions/checkout@v4 - uses: dtolnay/rust-toolchain@beta with: components: clippy - run: cargo clippy --all-features miri: runs-on: ubuntu-latest steps: - uses: actions/checkout@v4 - uses: dtolnay/rust-toolchain@nightly with: components: miri, rust-src - uses: taiki-e/install-action@v2 with: tool: cargo-nextest if: github.event_name == 'merge_group' - run: cargo miri nextest run if: github.event_name == 'merge_group' - run: cargo miri test --doc minimal-versions: name: Check MSRV and minimal-versions runs-on: ubuntu-latest steps: - uses: actions/checkout@v4 - uses: dtolnay/rust-toolchain@nightly - uses: dtolnay/rust-toolchain@1.82.0 # MSRV - uses: taiki-e/install-action@v2 with: tool: cargo-hack - name: Lock minimal direct dependencies run: cargo +nightly hack generate-lockfile --remove-dev-deps -Z direct-minimal-versions env: CARGO_RESOLVER_INCOMPATIBLE_RUST_VERSIONS: fallback - name: Build (nightly) run: cargo +nightly build --verbose --all-features - name: Build (MSRV) run: cargo build --verbose --features arbitrary,quickcheck,serde,sval,rayon # One job that "summarizes" the success state of this pipeline. This can then be added to branch # protection, rather than having to add each job separately. success: name: Success runs-on: ubuntu-latest needs: [tests, nostd_build, clippy, miri, minimal-versions] # Github branch protection is exceedingly silly and treats "jobs skipped because a dependency # failed" as success. So we have to do some contortions to ensure the job fails if any of its # dependencies fails. if: always() # make sure this is never "skipped" steps: # Manually check the status of all dependencies. `if: failure()` does not work. - name: check if any dependency failed run: jq --exit-status 'all(.result == "success")' <<< '${{ toJson(needs) }}' ordermap-1.1.0/.gitignore000064400000000000000000000000221046102023000134160ustar 00000000000000target Cargo.lock ordermap-1.1.0/.rustfmt.toml000064400000000000000000000000211046102023000141040ustar 00000000000000edition = "2021" ordermap-1.1.0/Cargo.lock0000644000000154270000000000100106300ustar # This file is automatically @generated by Cargo. # It is not intended for manual editing. version = 3 [[package]] name = "arbitrary" version = "1.4.2" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "c3d036a3c4ab069c7b410a2ce876bd74808d2d0888a82667669f8e783a898bf1" [[package]] name = "borsh" version = "1.6.0" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "d1da5ab77c1437701eeff7c88d968729e7766172279eab0676857b3d63af7a6f" dependencies = [ "cfg_aliases", "indexmap", ] [[package]] name = "cfg-if" version = "1.0.4" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "9330f8b2ff13f34540b44e946ef35111825727b38d33286ef986142615121801" [[package]] name = "cfg_aliases" version = "0.2.1" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "613afe47fcd5fac7ccf1db93babcb082c5994d996f20b8b159f2ad1658eb5724" [[package]] name = "crossbeam-deque" version = "0.8.6" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "9dd111b7b7f7d55b72c0a6ae361660ee5853c9af73f70c3c2ef6858b950e2e51" dependencies = [ "crossbeam-epoch", "crossbeam-utils", ] [[package]] name = "crossbeam-epoch" version = "0.9.18" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "5b82ac4a3c2ca9c3460964f020e1402edd5753411d7737aa39c3714ad1b5420e" dependencies = [ "crossbeam-utils", ] [[package]] name = "crossbeam-utils" version = "0.8.21" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "d0a5c400df2834b80a4c3327b3aad3a4c4cd4de0629063962b03235697506a28" [[package]] name = "either" version = "1.15.0" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "48c757948c5ede0e46177b7add2e67155f70e33c07fea8284df6576da70b3719" [[package]] name = "equivalent" version = "1.0.2" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "877a4ace8713b0bcf2a4e7eec82529c029f1d0619886d18145fea96c3ffe5c0f" [[package]] name = "fastrand" version = "2.3.0" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "37909eebbb50d72f9059c3b6d82c0463f2ff062c9e95845c43a6c9c0355411be" [[package]] name = "fnv" version = "1.0.7" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "3f9eec918d3f24069decb9af1554cad7c880e2da24a9afd88aca000531ab82c1" [[package]] name = "getrandom" version = "0.2.16" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "335ff9f135e4384c8150d6f27c6daed433577f86b4750418338c01a1a2528592" dependencies = [ "cfg-if", "libc", "wasi", ] [[package]] name = "hashbrown" version = "0.16.1" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "841d1cc9bed7f9236f321df977030373f4a4163ae1a7dbfe1a51a2c1a51d9100" [[package]] name = "indexmap" version = "2.13.0" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "7714e70437a7dc3ac8eb7e6f8df75fd8eb422675fc7678aff7364301092b1017" dependencies = [ "arbitrary", "equivalent", "hashbrown", "quickcheck", "rayon", "serde", "serde_core", "sval", ] [[package]] name = "itertools" version = "0.14.0" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "2b192c782037fadd9cfa75548310488aabdbf3d2da73885b31bd0abd03351285" dependencies = [ "either", ] [[package]] name = "libc" version = "0.2.179" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "c5a2d376baa530d1238d133232d15e239abad80d05838b4b59354e5268af431f" [[package]] name = "ordermap" version = "1.1.0" dependencies = [ "arbitrary", "borsh", "fastrand", "fnv", "indexmap", "itertools", "quickcheck", "rayon", "serde", "serde_core", "sval", ] [[package]] name = "proc-macro2" version = "1.0.105" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "535d180e0ecab6268a3e718bb9fd44db66bbbc256257165fc699dadf70d16fe7" dependencies = [ "unicode-ident", ] [[package]] name = "quickcheck" version = "1.0.3" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "588f6378e4dd99458b60ec275b4477add41ce4fa9f64dcba6f15adccb19b50d6" dependencies = [ "rand", ] [[package]] name = "quote" version = "1.0.43" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "dc74d9a594b72ae6656596548f56f667211f8a97b3d4c3d467150794690dc40a" dependencies = [ "proc-macro2", ] [[package]] name = "rand" version = "0.8.5" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "34af8d1a0e25924bc5b7c43c079c942339d8f0a8b57c39049bef581b46327404" dependencies = [ "rand_core", ] [[package]] name = "rand_core" version = "0.6.4" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "ec0be4795e2f6a28069bec0b5ff3e2ac9bafc99e6a9a7dc3547996c5c816922c" dependencies = [ "getrandom", ] [[package]] name = "rayon" version = "1.11.0" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "368f01d005bf8fd9b1206fb6fa653e6c4a81ceb1466406b81792d87c5677a58f" dependencies = [ "either", "rayon-core", ] [[package]] name = "rayon-core" version = "1.13.0" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "22e18b0f0062d30d4230b2e85ff77fdfe4326feb054b9783a3460d8435c8ab91" dependencies = [ "crossbeam-deque", "crossbeam-utils", ] [[package]] name = "serde" version = "1.0.228" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "9a8e94ea7f378bd32cbbd37198a4a91436180c5bb472411e48b5ec2e2124ae9e" dependencies = [ "serde_core", "serde_derive", ] [[package]] name = "serde_core" version = "1.0.228" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "41d385c7d4ca58e59fc732af25c3983b67ac852c1a25000afe1175de458b67ad" dependencies = [ "serde_derive", ] [[package]] name = "serde_derive" version = "1.0.228" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "d540f220d3187173da220f885ab66608367b6574e925011a9353e4badda91d79" dependencies = [ "proc-macro2", "quote", "syn", ] [[package]] name = "sval" version = "2.16.0" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "502b8906c4736190684646827fbab1e954357dfe541013bbd7994d033d53a1ca" [[package]] name = "syn" version = "2.0.114" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "d4d107df263a3013ef9b1879b0df87d706ff80f65a86ea879bd9c31f9b307c2a" dependencies = [ "proc-macro2", "quote", "unicode-ident", ] [[package]] name = "unicode-ident" version = "1.0.22" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "9312f7c4f6ff9069b165498234ce8be658059c6728633667c526e27dc2cf1df5" [[package]] name = "wasi" version = "0.11.1+wasi-snapshot-preview1" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "ccf3ec651a847eb01de73ccad15eb7d99f80485de043efb2f370cd654f4ea44b" ordermap-1.1.0/Cargo.toml0000644000000062500000000000100106450ustar # THIS FILE IS AUTOMATICALLY GENERATED BY CARGO # # When uploading crates to the registry Cargo will automatically # "normalize" Cargo.toml files for maximal compatibility # with all versions of Cargo and also rewrite `path` dependencies # to registry (e.g., crates.io) dependencies. # # If you are reading this file be aware that the original Cargo.toml # will likely look very different (and much more reasonable). # See Cargo.toml.orig for the original contents. [package] edition = "2021" rust-version = "1.82" name = "ordermap" version = "1.1.0" build = false autolib = false autobins = false autoexamples = false autotests = false autobenches = false description = "A hash table with consistent order and fast iteration." documentation = "https://docs.rs/ordermap/" readme = "README.md" keywords = [ "hashmap", "no_std", ] categories = [ "data-structures", "no-std", ] license = "Apache-2.0 OR MIT" repository = "https://github.com/indexmap-rs/ordermap" [package.metadata.release] allow-branch = ["main"] sign-tag = true tag-name = "{{version}}" [package.metadata.docs.rs] features = [ "arbitrary", "quickcheck", "serde", "borsh", "rayon", "sval", ] rustdoc-args = [ "--cfg", "docsrs", ] [features] arbitrary = [ "dep:arbitrary", "indexmap/arbitrary", ] borsh = [ "dep:borsh", "borsh/indexmap", ] default = ["std"] quickcheck = [ "dep:quickcheck", "indexmap/quickcheck", ] rayon = [ "dep:rayon", "indexmap/rayon", ] serde = [ "dep:serde_core", "dep:serde", "indexmap/serde", ] std = ["indexmap/std"] sval = [ "dep:sval", "indexmap/sval", ] [lib] name = "ordermap" path = "src/lib.rs" bench = false [[test]] name = "equivalent_trait" path = "tests/equivalent_trait.rs" [[test]] name = "macros_full_path" path = "tests/macros_full_path.rs" [[test]] name = "quick" path = "tests/quick.rs" [[test]] name = "tests" path = "tests/tests.rs" [[bench]] name = "bench" path = "benches/bench.rs" [[bench]] name = "faststring" path = "benches/faststring.rs" [dependencies.arbitrary] version = "1.0" optional = true default-features = false [dependencies.borsh] version = "1.5.6" optional = true default-features = false [dependencies.indexmap] version = "2.13.0" default-features = false [dependencies.quickcheck] version = "1.0" optional = true default-features = false [dependencies.rayon] version = "1.9" optional = true [dependencies.serde_core] version = "1.0.220" optional = true default-features = false [dependencies.sval] version = "2" optional = true default-features = false [dev-dependencies.fastrand] version = "2" default-features = false [dev-dependencies.fnv] version = "1.0" [dev-dependencies.itertools] version = "0.14" [dev-dependencies.quickcheck] version = "1.0" default-features = false [dev-dependencies.serde] version = "1.0" features = ["derive"] default-features = false [target."cfg(any())".dependencies.serde] version = "1.0.220" optional = true default-features = false [lints.clippy] style = "allow" [lints.rust] private-bounds = "deny" private-interfaces = "deny" rust-2018-idioms = "warn" unnameable-types = "deny" unreachable-pub = "deny" unsafe-code = "deny" [profile.bench] debug = 2 ordermap-1.1.0/Cargo.toml.orig000064400000000000000000000043201046102023000143220ustar 00000000000000[package] name = "ordermap" edition = "2021" version = "1.1.0" documentation = "https://docs.rs/ordermap/" repository = "https://github.com/indexmap-rs/ordermap" license = "Apache-2.0 OR MIT" description = "A hash table with consistent order and fast iteration." keywords = ["hashmap", "no_std"] categories = ["data-structures", "no-std"] rust-version = "1.82" [lib] bench = false [dependencies] indexmap = { version = "2.13.0", default-features = false } arbitrary = { version = "1.0", optional = true, default-features = false } quickcheck = { version = "1.0", optional = true, default-features = false } serde_core = { version = "1.0.220", optional = true, default-features = false } borsh = { version = "1.5.6", optional = true, default-features = false } rayon = { version = "1.9", optional = true } sval = { version = "2", optional = true, default-features = false } # serde v1.0.220 is the first version that released with `serde_core`. # This is required to avoid conflict with other `serde` users which may require an older version. [target.'cfg(any())'.dependencies] serde = { version = "1.0.220", default-features = false, optional = true } [dev-dependencies] itertools = "0.14" fastrand = { version = "2", default-features = false } quickcheck = { version = "1.0", default-features = false } fnv = "1.0" serde = { version = "1.0", default-features = false, features = ["derive"] } [features] default = ["std"] std = ["indexmap/std"] arbitrary = ["dep:arbitrary", "indexmap/arbitrary"] quickcheck = ["dep:quickcheck", "indexmap/quickcheck"] rayon = ["dep:rayon", "indexmap/rayon"] serde = ["dep:serde_core", "dep:serde", "indexmap/serde"] sval = ["dep:sval", "indexmap/sval"] borsh = ["dep:borsh", "borsh/indexmap"] [profile.bench] debug = true [package.metadata.release] allow-branch = ["main"] sign-tag = true tag-name = "{{version}}" [package.metadata.docs.rs] features = ["arbitrary", "quickcheck", "serde", "borsh", "rayon", "sval"] rustdoc-args = ["--cfg", "docsrs"] [workspace] members = ["test-nostd", "test-serde", "test-sval"] [lints.rust] private-bounds = "deny" private-interfaces = "deny" unnameable-types = "deny" unreachable-pub = "deny" unsafe-code = "deny" rust-2018-idioms = "warn" [lints.clippy] style = "allow" ordermap-1.1.0/LICENSE-APACHE000064400000000000000000000251371046102023000133700ustar 00000000000000 Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright [yyyy] [name of copyright owner] Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ordermap-1.1.0/LICENSE-MIT000064400000000000000000000020311046102023000130640ustar 00000000000000Copyright (c) 2016--2017 Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ordermap-1.1.0/README.md000064400000000000000000000062231046102023000127160ustar 00000000000000# ordermap [![build status](https://github.com/indexmap-rs/ordermap/actions/workflows/ci.yml/badge.svg?branch=main)](https://github.com/indexmap-rs/ordermap/actions) [![crates.io](https://img.shields.io/crates/v/ordermap.svg)](https://crates.io/crates/ordermap) [![docs](https://docs.rs/ordermap/badge.svg)](https://docs.rs/ordermap) [![rustc](https://img.shields.io/badge/rust-1.82%2B-orange.svg)](https://img.shields.io/badge/rust-1.82%2B-orange.svg) A pure-Rust hash table which preserves (in a limited sense) insertion order. This crate implements compact map and set data-structures, where the iteration order of the keys is independent from their hash or value. It preserves insertion order in most mutating operations, and it allows lookup of entries by either hash table key or numerical index. Note: this crate was originally what became the `indexmap` crate, and it was deprecated for a while in favor of that, but then `ordermap` returned as a wrapper over `indexmap` with stronger ordering properties. # Background This was inspired by Python 3.6's new dict implementation (which remembers the insertion order and is fast to iterate, and is compact in memory). Some of those features were translated to Rust, and some were not. The results were `ordermap` and `indexmap`, hash tables that have following properties: - Order is **independent of hash function** and hash values of keys. - Fast to iterate. - Indexed in compact space. - Preserves insertion order **as long** as you don't call `.swap_remove()` or other methods that explicitly change order. - In `ordermap`, the regular `.remove()` **does** preserve insertion order, equivalent to what `indexmap` calls `.shift_remove()`. - Uses hashbrown for the inner table, just like Rust's libstd `HashMap` does. Since its reintroduction in 0.5, `ordermap` has also used its entry order for `PartialEq` and `Eq`, whereas `indexmap` considers the same entries in *any* order to be equal for drop-in compatibility with `HashMap` semantics. Using the order is faster, and also allows `ordermap` to implement `PartialOrd`, `Ord`, and `Hash`. ## Performance `OrderMap` derives a couple of performance facts directly from how it is constructed, which is roughly: > A raw hash table of key-value indices, and a vector of key-value pairs. - As a wrapper, `OrderMap` should maintain the same performance as `IndexMap` for most operations, with the main difference being the removal strategy. - Iteration is very fast since it is on the dense key-values. - Lookup is fast-ish because the initial 7-bit hash lookup uses SIMD, and indices are densely stored. Lookup also is slow-ish since the actual key-value pairs are stored separately. (Visible when cpu caches size is limiting.) - In practice, `OrderMap` has been tested out as the hashmap in rustc in [PR45282] and the performance was roughly on par across the whole workload. - If you want the properties of `OrderMap`, or its strongest performance points fits your workload, it might be the best hash table implementation. [PR45282]: https://github.com/rust-lang/rust/pull/45282 # Recent Changes See [RELEASES.md](https://github.com/indexmap-rs/ordermap/blob/main/RELEASES.md). ordermap-1.1.0/RELEASES.md000064400000000000000000000205731046102023000131700ustar 00000000000000# Releases ## 1.1.0 (2026-01-07) - Updated the `indexmap` dependency to version 2.13.0 for new features: - Implemented `Clone` for `IntoKeys` and `IntoValues`. - Added `map::Slice::split_at_checked` and `split_at_mut_checked`. - Added `set::Slice::split_at_checked`. ## 1.0.0 (2025-10-17) - **MSRV**: Rust 1.82.0 or later is now required. - Updated the `indexmap` dependency to version 2.12.0. - Added `pop_if` methods to `OrderMap` and `OrderSet`, similar to the method for `Vec` added in Rust 1.86. ## 0.5.12 (2025-09-15) - Make the minimum `serde` version only apply when "serde" is enabled. ## 0.5.11 (2025-09-15) - Switched the "serde" feature to depend on `serde_core`, improving build parallelism in cases where other dependents have enabled "serde/derive". ## 0.5.10 (2025-09-08) - Added a `get_key_value_mut` method to `OrderMap`. - Removed the unnecessary `Ord` bound on `insert_sorted_by` methods. ## 0.5.9 (2025-08-22) - Added `insert_sorted_by` and `insert_sorted_by_key` methods to `OrderMap`, `OrderSet`, and `VacantEntry`, like customizable versions of `insert_sorted`. - Added `is_sorted`, `is_sorted_by`, and `is_sorted_by_key` methods to `OrderMap` and `OrderSet`, as well as their `Slice` counterparts. - Added `sort_by_key` and `sort_unstable_by_key` methods to `OrderMap` and `OrderSet`, as well as parallel counterparts. - Added `replace_index` methods to `OrderMap`, `OrderSet`, and `VacantEntry` to replace the key (or set value) at a given index. - Added optional `sval` serialization support. ## 0.5.8 (2025-06-26) - Added `extract_if` methods to `OrderMap` and `OrderSet`, similar to the methods for `HashMap` and `HashSet` with ranges like `Vec::extract_if`. - Added more `#[track_caller]` annotations to functions that may panic. ## 0.5.7 (2025-04-04) - Added a `get_disjoint_mut` method to `OrderMap`, matching Rust 1.86's `HashMap` method. - Added a `get_disjoint_indices_mut` method to `OrderMap`, matching Rust 1.86's `get_disjoint_mut` method on slices. - Updated the `indexmap` dependency to version 2.9.0. ## 0.5.6 (2025-03-10) - Added `ordermap_with_default!` and `orderset_with_default!` to be used with alternative hashers, especially when using the crate without `std`. - Updated the `indexmap` dependency to version 2.8.0. ## 0.5.5 (2025-01-19) - Added `#[track_caller]` to functions that may panic. - Updated the `indexmap` dependency to version 2.7.1. ## 0.5.4 (2024-11-30) - Added methods `Entry::insert_entry` and `VacantEntry::insert_entry`, returning an `OccupiedEntry` after insertion. - Updated the `indexmap` dependency to version 2.7.0, indirectly updating to `hashbrown` version 0.15 as well. ## 0.5.3 (2024-08-30) - Added an `insert_before` method to `OrderMap` and `OrderSet`, as an alternative to `shift_insert` with different behavior on existing entries. - Added `first_entry` and `last_entry` methods to `OrderMap`. - Added `From` implementations between `IndexedEntry` and `OccupiedEntry`. ## 0.5.2 (2024-08-13) - Added methods `OrderMap::append` and `OrderSet::append`, moving all items from one map or set into another, and leaving the original capacity for reuse. ## 0.5.1 (2024-08-01) - Added trait `MutableEntryKey` for opt-in mutable access to map entry keys. - Added method `MutableKeys::iter_mut2` for opt-in mutable iteration of map keys and values. ## 0.5.0 (2024-06-25) - Reinstated `ordermap` as a crate that wraps `indexmap` with stronger ordering semantics. It **does** consider order for `PartialEq` and `Eq`, also adding implementations of `PartialOrd`, `Ord`, and `Hash`. Methods like `remove` use the semantics of indexmap's `shift_remove`. ## 0.4.2 (2018-11-17) - Inserted more deprecation information in the documentation. Note: the crate ordermap has been renamed with no change in functionality to indexmap; please use it under its new name. ## 0.4.1 (2018-02-14) - Renamed crate to `indexmap`; the `ordermap` crate is now deprecated and the types `OrderMap/Set` now have a deprecation notice. ## 0.4.0 (2018-02-02) - This is the last release series for this `ordermap` under that name, because the crate is **going to be renamed** to `indexmap` (with types `IndexMap`, `IndexSet`) and no change in functionality! - The map and its associated structs moved into the `map` submodule of the crate, so that the map and set are symmetric + The iterators, `Entry` and other structs are now under `ordermap::map::` - Internally refactored `OrderMap` so that all the main algorithms (insertion, lookup, removal etc) that don't use the `S` parameter (the hasher) are compiled without depending on `S`, which reduces generics bloat. - `Entry` no longer has a type parameter `S`, which is just like the standard `HashMap`'s entry. - Minimum Rust version requirement increased to Rust 1.18 ## 0.3.5 (2018-01-14) - Documentation improvements ## 0.3.4 (2018-01-04) - The `.retain()` methods for `OrderMap` and `OrderSet` now traverse the elements in order, and the retained elements **keep their order** - Added new methods `.sort_by()`, `.sort_keys()` to `OrderMap` and `.sort_by()`, `.sort()` to `OrderSet`. These methods allow you to sort the maps in place efficiently. ## 0.3.3 (2017-12-28) - Document insertion behaviour better by @lucab - Updated dependences (no feature changes) by @ignatenkobrain ## 0.3.2 (2017-11-25) - Add `OrderSet` by @cuviper! - `OrderMap::drain` is now (too) a double ended iterator. ## 0.3.1 (2017-11-19) - In all ordermap iterators, forward the `collect` method to the underlying iterator as well. - Add crates.io categories. ## 0.3.0 (2017-10-07) - The methods `get_pair`, `get_pair_index` were both replaced by `get_full` (and the same for the mutable case). - Method `swap_remove_pair` replaced by `swap_remove_full`. - Add trait `MutableKeys` for opt-in mutable key access. Mutable key access is only possible through the methods of this extension trait. - Add new trait `Equivalent` for key equivalence. This extends the `Borrow` trait mechanism for `OrderMap::get` in a backwards compatible way, just some minor type inference related issues may become apparent. See [#10] for more information. - Implement `Extend<(&K, &V)>` by @xfix. [#10]: https://github.com/indexmap-rs/indexmap/pull/10 ## 0.2.13 (2017-09-30) - Fix deserialization to support custom hashers by @Techcable. - Add methods `.index()` on the entry types by @garro95. ## 0.2.12 (2017-09-11) - Add methods `.with_hasher()`, `.hasher()`. ## 0.2.11 (2017-08-29) - Support `ExactSizeIterator` for the iterators. By @Binero. - Use `Box<[Pos]>` internally, saving a word in the `OrderMap` struct. - Serde support, with crate feature `"serde-1"`. By @xfix. ## 0.2.10 (2017-04-29) - Add iterator `.drain(..)` by @stevej. ## 0.2.9 (2017-03-26) - Add method `.is_empty()` by @overvenus. - Implement `PartialEq, Eq` by @overvenus. - Add method `.sorted_by()`. ## 0.2.8 (2017-03-01) - Add iterators `.values()` and `.values_mut()`. - Fix compatibility with 32-bit platforms. ## 0.2.7 (2016-11-02) - Add `.retain()`. ## 0.2.6 (2016-11-02) - Add `OccupiedEntry::remove_entry` and other minor entry methods, so that it now has all the features of `HashMap`'s entries. ## 0.2.5 (2016-10-31) - Improved `.pop()` slightly. ## 0.2.4 (2016-10-22) - Improved performance of `.insert()` ([#3]) by @pczarn. [#3]: https://github.com/indexmap-rs/indexmap/pull/3 ## 0.2.3 (2016-10-11) - Generalize `Entry` for now, so that it works on hashmaps with non-default hasher. However, there's a lingering compat issue since libstd `HashMap` does not parameterize its entries by the hasher (`S` typarm). - Special case some iterator methods like `.nth()`. ## 0.2.2 (2016-10-02) - Disable the verbose `Debug` impl by default. ## 0.2.1 (2016-10-02) - Fix doc links and clarify docs. ## 0.2.0 (2016-10-01) - Add more `HashMap` methods & compat with its API. - Experimental support for `.entry()` (the simplest parts of the API). - Add `.reserve()` (placeholder impl). - Add `.remove()` as synonym for `.swap_remove()`. - Changed `.insert()` to swap value if the entry already exists, and return `Option`. - Experimental support as an *indexed* hash map! Added methods `.get_index()`, `.get_index_mut()`, `.swap_remove_index()`, `.get_pair_index()`, `.get_pair_index_mut()`. ## 0.1.2 (2016-09-19) - Implement the 32/32 split idea for `Pos` which improves cache utilization and lookup performance. ## 0.1.1 (2016-09-16) - Initial release. ordermap-1.1.0/benches/bench.rs000064400000000000000000000411751046102023000145000ustar 00000000000000#![feature(test)] extern crate test; use fnv::FnvHasher; use std::hash::BuildHasherDefault; use std::hash::Hash; use std::hint::black_box; use std::sync::LazyLock; type FnvBuilder = BuildHasherDefault; use test::Bencher; use ordermap::OrderMap; use std::collections::HashMap; /// Use a consistently seeded Rng for benchmark stability fn small_rng() -> fastrand::Rng { let seed = u64::from_le_bytes(*b"ordermap"); fastrand::Rng::with_seed(seed) } #[bench] fn new_hashmap(b: &mut Bencher) { b.iter(|| HashMap::::new()); } #[bench] fn new_ordermap(b: &mut Bencher) { b.iter(|| OrderMap::::new()); } #[bench] fn with_capacity_10e5_hashmap(b: &mut Bencher) { b.iter(|| HashMap::::with_capacity(10_000)); } #[bench] fn with_capacity_10e5_ordermap(b: &mut Bencher) { b.iter(|| OrderMap::::with_capacity(10_000)); } #[bench] fn insert_hashmap_10_000(b: &mut Bencher) { let c = 10_000; b.iter(|| { let mut map = HashMap::with_capacity(c); for x in 0..c { map.insert(x, ()); } map }); } #[bench] fn insert_ordermap_10_000(b: &mut Bencher) { let c = 10_000; b.iter(|| { let mut map = OrderMap::with_capacity(c); for x in 0..c { map.insert(x, ()); } map }); } #[bench] fn insert_hashmap_string_10_000(b: &mut Bencher) { let c = 10_000; b.iter(|| { let mut map = HashMap::with_capacity(c); for x in 0..c { map.insert(x.to_string(), ()); } map }); } #[bench] fn insert_ordermap_string_10_000(b: &mut Bencher) { let c = 10_000; b.iter(|| { let mut map = OrderMap::with_capacity(c); for x in 0..c { map.insert(x.to_string(), ()); } map }); } #[bench] fn insert_hashmap_str_10_000(b: &mut Bencher) { let c = 10_000; let ss = Vec::from_iter((0..c).map(|x| x.to_string())); b.iter(|| { let mut map = HashMap::with_capacity(c); for key in &ss { map.insert(&key[..], ()); } map }); } #[bench] fn insert_ordermap_str_10_000(b: &mut Bencher) { let c = 10_000; let ss = Vec::from_iter((0..c).map(|x| x.to_string())); b.iter(|| { let mut map = OrderMap::with_capacity(c); for key in &ss { map.insert(&key[..], ()); } map }); } #[bench] fn insert_hashmap_int_bigvalue_10_000(b: &mut Bencher) { let c = 10_000; let value = [0u64; 10]; b.iter(|| { let mut map = HashMap::with_capacity(c); for i in 0..c { map.insert(i, value); } map }); } #[bench] fn insert_ordermap_int_bigvalue_10_000(b: &mut Bencher) { let c = 10_000; let value = [0u64; 10]; b.iter(|| { let mut map = OrderMap::with_capacity(c); for i in 0..c { map.insert(i, value); } map }); } #[bench] fn insert_hashmap_100_000(b: &mut Bencher) { let c = 100_000; b.iter(|| { let mut map = HashMap::with_capacity(c); for x in 0..c { map.insert(x, ()); } map }); } #[bench] fn insert_ordermap_100_000(b: &mut Bencher) { let c = 100_000; b.iter(|| { let mut map = OrderMap::with_capacity(c); for x in 0..c { map.insert(x, ()); } map }); } #[bench] fn insert_hashmap_150(b: &mut Bencher) { let c = 150; b.iter(|| { let mut map = HashMap::with_capacity(c); for x in 0..c { map.insert(x, ()); } map }); } #[bench] fn insert_ordermap_150(b: &mut Bencher) { let c = 150; b.iter(|| { let mut map = OrderMap::with_capacity(c); for x in 0..c { map.insert(x, ()); } map }); } #[bench] fn entry_hashmap_150(b: &mut Bencher) { let c = 150; b.iter(|| { let mut map = HashMap::with_capacity(c); for x in 0..c { map.entry(x).or_insert(()); } map }); } #[bench] fn entry_ordermap_150(b: &mut Bencher) { let c = 150; b.iter(|| { let mut map = OrderMap::with_capacity(c); for x in 0..c { map.entry(x).or_insert(()); } map }); } #[bench] fn iter_sum_hashmap_10_000(b: &mut Bencher) { let c = 10_000; let mut map = HashMap::with_capacity(c); let len = c - c / 10; for x in 0..len { map.insert(x, ()); } assert_eq!(map.len(), len); b.iter(|| map.keys().sum::()); } #[bench] fn iter_sum_ordermap_10_000(b: &mut Bencher) { let c = 10_000; let mut map = OrderMap::with_capacity(c); let len = c - c / 10; for x in 0..len { map.insert(x, ()); } assert_eq!(map.len(), len); b.iter(|| map.keys().sum::()); } #[bench] fn iter_black_box_hashmap_10_000(b: &mut Bencher) { let c = 10_000; let mut map = HashMap::with_capacity(c); let len = c - c / 10; for x in 0..len { map.insert(x, ()); } assert_eq!(map.len(), len); b.iter(|| { for &key in map.keys() { black_box(key); } }); } #[bench] fn iter_black_box_ordermap_10_000(b: &mut Bencher) { let c = 10_000; let mut map = OrderMap::with_capacity(c); let len = c - c / 10; for x in 0..len { map.insert(x, ()); } assert_eq!(map.len(), len); b.iter(|| { for &key in map.keys() { black_box(key); } }); } fn shuffled_keys(iter: I) -> Vec where I: IntoIterator, { let mut v = Vec::from_iter(iter); let mut rng = small_rng(); rng.shuffle(&mut v); v } #[bench] fn lookup_hashmap_10_000_exist(b: &mut Bencher) { let c = 10_000; let mut map = HashMap::with_capacity(c); let keys = shuffled_keys(0..c); for &key in &keys { map.insert(key, 1); } b.iter(|| { let mut found = 0; for key in 5000..c { found += map.get(&key).is_some() as i32; } found }); } #[bench] fn lookup_hashmap_10_000_noexist(b: &mut Bencher) { let c = 10_000; let mut map = HashMap::with_capacity(c); let keys = shuffled_keys(0..c); for &key in &keys { map.insert(key, 1); } b.iter(|| { let mut found = 0; for key in c..15000 { found += map.get(&key).is_some() as i32; } found }); } #[bench] fn lookup_ordermap_10_000_exist(b: &mut Bencher) { let c = 10_000; let mut map = OrderMap::with_capacity(c); let keys = shuffled_keys(0..c); for &key in &keys { map.insert(key, 1); } b.iter(|| { let mut found = 0; for key in 5000..c { found += map.get(&key).is_some() as i32; } found }); } #[bench] fn lookup_ordermap_10_000_noexist(b: &mut Bencher) { let c = 10_000; let mut map = OrderMap::with_capacity(c); let keys = shuffled_keys(0..c); for &key in &keys { map.insert(key, 1); } b.iter(|| { let mut found = 0; for key in c..15000 { found += map.get(&key).is_some() as i32; } found }); } // number of items to look up const LOOKUP_MAP_SIZE: u32 = 100_000_u32; const LOOKUP_SAMPLE_SIZE: u32 = 5000; const SORT_MAP_SIZE: usize = 10_000; // use (lazy) statics so that comparison benchmarks use the exact same inputs static KEYS: LazyLock> = LazyLock::new(|| shuffled_keys(0..LOOKUP_MAP_SIZE)); static HMAP_100K: LazyLock> = LazyLock::new(|| { let c = LOOKUP_MAP_SIZE; let mut map = HashMap::with_capacity(c as usize); let keys = &*KEYS; for &key in keys { map.insert(key, key); } map }); static IMAP_100K: LazyLock> = LazyLock::new(|| { let c = LOOKUP_MAP_SIZE; let mut map = OrderMap::with_capacity(c as usize); let keys = &*KEYS; for &key in keys { map.insert(key, key); } map }); static IMAP_SORT_U32: LazyLock> = LazyLock::new(|| { let mut map = OrderMap::with_capacity(SORT_MAP_SIZE); for &key in &KEYS[..SORT_MAP_SIZE] { map.insert(key, key); } map }); static IMAP_SORT_S: LazyLock> = LazyLock::new(|| { let mut map = OrderMap::with_capacity(SORT_MAP_SIZE); for &key in &KEYS[..SORT_MAP_SIZE] { map.insert(format!("{:^16x}", &key), String::new()); } map }); #[bench] fn lookup_hashmap_100_000_multi(b: &mut Bencher) { let map = &*HMAP_100K; b.iter(|| { let mut found = 0; for key in 0..LOOKUP_SAMPLE_SIZE { found += map.get(&key).is_some() as u32; } found }); } #[bench] fn lookup_ordermap_100_000_multi(b: &mut Bencher) { let map = &*IMAP_100K; b.iter(|| { let mut found = 0; for key in 0..LOOKUP_SAMPLE_SIZE { found += map.get(&key).is_some() as u32; } found }); } // inorder: Test looking up keys in the same order as they were inserted #[bench] fn lookup_hashmap_100_000_inorder_multi(b: &mut Bencher) { let map = &*HMAP_100K; let keys = &*KEYS; b.iter(|| { let mut found = 0; for key in &keys[0..LOOKUP_SAMPLE_SIZE as usize] { found += map.get(key).is_some() as u32; } found }); } #[bench] fn lookup_ordermap_100_000_inorder_multi(b: &mut Bencher) { let map = &*IMAP_100K; let keys = &*KEYS; b.iter(|| { let mut found = 0; for key in &keys[0..LOOKUP_SAMPLE_SIZE as usize] { found += map.get(key).is_some() as u32; } found }); } #[bench] fn lookup_hashmap_100_000_single(b: &mut Bencher) { let map = &*HMAP_100K; let mut iter = (0..LOOKUP_MAP_SIZE + LOOKUP_SAMPLE_SIZE).cycle(); b.iter(|| { let key = iter.next().unwrap(); map.get(&key).is_some() }); } #[bench] fn lookup_ordermap_100_000_single(b: &mut Bencher) { let map = &*IMAP_100K; let mut iter = (0..LOOKUP_MAP_SIZE + LOOKUP_SAMPLE_SIZE).cycle(); b.iter(|| { let key = iter.next().unwrap(); map.get(&key).is_some() }); } const GROW_SIZE: usize = 100_000; type GrowKey = u32; // Test grow/resize without preallocation #[bench] fn grow_fnv_hashmap_100_000(b: &mut Bencher) { b.iter(|| { let mut map: HashMap<_, _, FnvBuilder> = HashMap::default(); for x in 0..GROW_SIZE { map.insert(x as GrowKey, x as GrowKey); } map }); } #[bench] fn grow_fnv_ordermap_100_000(b: &mut Bencher) { b.iter(|| { let mut map: OrderMap<_, _, FnvBuilder> = OrderMap::default(); for x in 0..GROW_SIZE { map.insert(x as GrowKey, x as GrowKey); } map }); } const MERGE: u64 = 10_000; #[bench] fn hashmap_merge_simple(b: &mut Bencher) { let first_map: HashMap = (0..MERGE).map(|i| (i, ())).collect(); let second_map: HashMap = (MERGE..MERGE * 2).map(|i| (i, ())).collect(); b.iter(|| { let mut merged = first_map.clone(); merged.extend(second_map.iter().map(|(&k, &v)| (k, v))); merged }); } #[bench] fn hashmap_merge_shuffle(b: &mut Bencher) { let first_map: HashMap = (0..MERGE).map(|i| (i, ())).collect(); let second_map: HashMap = (MERGE..MERGE * 2).map(|i| (i, ())).collect(); let mut v = Vec::new(); let mut rng = small_rng(); b.iter(|| { let mut merged = first_map.clone(); v.extend(second_map.iter().map(|(&k, &v)| (k, v))); rng.shuffle(&mut v); merged.extend(v.drain(..)); merged }); } #[bench] fn ordermap_merge_simple(b: &mut Bencher) { let first_map: OrderMap = (0..MERGE).map(|i| (i, ())).collect(); let second_map: OrderMap = (MERGE..MERGE * 2).map(|i| (i, ())).collect(); b.iter(|| { let mut merged = first_map.clone(); merged.extend(second_map.iter().map(|(&k, &v)| (k, v))); merged }); } #[bench] fn ordermap_merge_shuffle(b: &mut Bencher) { let first_map: OrderMap = (0..MERGE).map(|i| (i, ())).collect(); let second_map: OrderMap = (MERGE..MERGE * 2).map(|i| (i, ())).collect(); let mut v = Vec::new(); let mut rng = small_rng(); b.iter(|| { let mut merged = first_map.clone(); v.extend(second_map.iter().map(|(&k, &v)| (k, v))); rng.shuffle(&mut v); merged.extend(v.drain(..)); merged }); } #[bench] fn swap_remove_ordermap_100_000(b: &mut Bencher) { let map = IMAP_100K.clone(); let mut keys = Vec::from_iter(map.keys().copied()); let mut rng = small_rng(); rng.shuffle(&mut keys); b.iter(|| { let mut map = map.clone(); for key in &keys { map.swap_remove(key); } assert_eq!(map.len(), 0); map }); } #[bench] fn remove_ordermap_100_000_few(b: &mut Bencher) { let map = IMAP_100K.clone(); let mut keys = Vec::from_iter(map.keys().copied()); let mut rng = small_rng(); rng.shuffle(&mut keys); keys.truncate(50); b.iter(|| { let mut map = map.clone(); for key in &keys { map.remove(key); } assert_eq!(map.len(), IMAP_100K.len() - keys.len()); map }); } #[bench] fn remove_ordermap_2_000_full(b: &mut Bencher) { let mut keys = KEYS[..2_000].to_vec(); let mut map = OrderMap::with_capacity(keys.len()); for &key in &keys { map.insert(key, key); } let mut rng = small_rng(); rng.shuffle(&mut keys); b.iter(|| { let mut map = map.clone(); for key in &keys { map.remove(key); } assert_eq!(map.len(), 0); map }); } #[bench] fn pop_ordermap_100_000(b: &mut Bencher) { let map = IMAP_100K.clone(); b.iter(|| { let mut map = map.clone(); while !map.is_empty() { map.pop(); } assert_eq!(map.len(), 0); map }); } #[bench] fn few_retain_ordermap_100_000(b: &mut Bencher) { let map = IMAP_100K.clone(); b.iter(|| { let mut map = map.clone(); map.retain(|k, _| *k % 7 == 0); map }); } #[bench] fn few_retain_hashmap_100_000(b: &mut Bencher) { let map = HMAP_100K.clone(); b.iter(|| { let mut map = map.clone(); map.retain(|k, _| *k % 7 == 0); map }); } #[bench] fn half_retain_ordermap_100_000(b: &mut Bencher) { let map = IMAP_100K.clone(); b.iter(|| { let mut map = map.clone(); map.retain(|k, _| *k % 2 == 0); map }); } #[bench] fn half_retain_hashmap_100_000(b: &mut Bencher) { let map = HMAP_100K.clone(); b.iter(|| { let mut map = map.clone(); map.retain(|k, _| *k % 2 == 0); map }); } #[bench] fn many_retain_ordermap_100_000(b: &mut Bencher) { let map = IMAP_100K.clone(); b.iter(|| { let mut map = map.clone(); map.retain(|k, _| *k % 100 != 0); map }); } #[bench] fn many_retain_hashmap_100_000(b: &mut Bencher) { let map = HMAP_100K.clone(); b.iter(|| { let mut map = map.clone(); map.retain(|k, _| *k % 100 != 0); map }); } // simple sort impl for comparison pub fn simple_sort(m: &mut OrderMap) { let mut ordered: Vec<_> = m.drain(..).collect(); ordered.sort_by(|left, right| left.0.cmp(&right.0)); m.extend(ordered); } #[bench] fn ordermap_sort_s(b: &mut Bencher) { let map = IMAP_SORT_S.clone(); // there's a map clone there, but it's still useful to profile this b.iter(|| { let mut map = map.clone(); map.sort_keys(); map }); } #[bench] fn ordermap_simple_sort_s(b: &mut Bencher) { let map = IMAP_SORT_S.clone(); // there's a map clone there, but it's still useful to profile this b.iter(|| { let mut map = map.clone(); simple_sort(&mut map); map }); } #[bench] fn ordermap_sort_u32(b: &mut Bencher) { let map = IMAP_SORT_U32.clone(); // there's a map clone there, but it's still useful to profile this b.iter(|| { let mut map = map.clone(); map.sort_keys(); map }); } #[bench] fn ordermap_simple_sort_u32(b: &mut Bencher) { let map = IMAP_SORT_U32.clone(); // there's a map clone there, but it's still useful to profile this b.iter(|| { let mut map = map.clone(); simple_sort(&mut map); map }); } // measure the fixed overhead of cloning in sort benchmarks #[bench] fn ordermap_clone_for_sort_s(b: &mut Bencher) { let map = IMAP_SORT_S.clone(); b.iter(|| map.clone()); } #[bench] fn ordermap_clone_for_sort_u32(b: &mut Bencher) { let map = IMAP_SORT_U32.clone(); b.iter(|| map.clone()); } ordermap-1.1.0/benches/faststring.rs000064400000000000000000000100551046102023000155760ustar 00000000000000#![feature(test)] extern crate test; use test::Bencher; use ordermap::OrderMap; use std::collections::HashMap; use std::hash::{Hash, Hasher}; use std::borrow::Borrow; use std::ops::Deref; /// Use a consistently seeded Rng for benchmark stability fn small_rng() -> fastrand::Rng { let seed = u64::from_le_bytes(*b"ordermap"); fastrand::Rng::with_seed(seed) } #[derive(PartialEq, Eq, Copy, Clone)] #[repr(transparent)] pub struct OneShot(pub T); impl Hash for OneShot { fn hash(&self, h: &mut H) { h.write(self.0.as_bytes()) } } impl<'a, S> From<&'a S> for &'a OneShot where S: AsRef, { #[allow(unsafe_code)] fn from(s: &'a S) -> Self { let s: &str = s.as_ref(); // SAFETY: OneShot is a `repr(transparent)` wrapper unsafe { &*(s as *const str as *const OneShot) } } } impl Hash for OneShot { fn hash(&self, h: &mut H) { h.write(self.0.as_bytes()) } } impl Borrow> for OneShot { fn borrow(&self) -> &OneShot { <&OneShot>::from(&self.0) } } impl Deref for OneShot { type Target = T; fn deref(&self) -> &T { &self.0 } } fn shuffled_keys(iter: I) -> Vec where I: IntoIterator, { let mut v = Vec::from_iter(iter); let mut rng = small_rng(); rng.shuffle(&mut v); v } #[bench] fn insert_hashmap_string_10_000(b: &mut Bencher) { let c = 10_000; b.iter(|| { let mut map = HashMap::with_capacity(c); for x in 0..c { map.insert(x.to_string(), ()); } map }); } #[bench] fn insert_hashmap_string_oneshot_10_000(b: &mut Bencher) { let c = 10_000; b.iter(|| { let mut map = HashMap::with_capacity(c); for x in 0..c { map.insert(OneShot(x.to_string()), ()); } map }); } #[bench] fn insert_ordermap_string_10_000(b: &mut Bencher) { let c = 10_000; b.iter(|| { let mut map = OrderMap::with_capacity(c); for x in 0..c { map.insert(x.to_string(), ()); } map }); } #[bench] fn lookup_hashmap_10_000_exist_string(b: &mut Bencher) { let c = 10_000; let mut map = HashMap::with_capacity(c); let keys = shuffled_keys(0..c); for &key in &keys { map.insert(key.to_string(), 1); } let lookups = (5000..c).map(|x| x.to_string()).collect::>(); b.iter(|| { let mut found = 0; for key in &lookups { found += map.get(key).is_some() as i32; } found }); } #[bench] fn lookup_hashmap_10_000_exist_string_oneshot(b: &mut Bencher) { let c = 10_000; let mut map = HashMap::with_capacity(c); let keys = shuffled_keys(0..c); for &key in &keys { map.insert(OneShot(key.to_string()), 1); } let lookups = (5000..c) .map(|x| OneShot(x.to_string())) .collect::>(); b.iter(|| { let mut found = 0; for key in &lookups { found += map.get(key).is_some() as i32; } found }); } #[bench] fn lookup_ordermap_10_000_exist_string(b: &mut Bencher) { let c = 10_000; let mut map = OrderMap::with_capacity(c); let keys = shuffled_keys(0..c); for &key in &keys { map.insert(key.to_string(), 1); } let lookups = (5000..c).map(|x| x.to_string()).collect::>(); b.iter(|| { let mut found = 0; for key in &lookups { found += map.get(key).is_some() as i32; } found }); } #[bench] fn lookup_ordermap_10_000_exist_string_oneshot(b: &mut Bencher) { let c = 10_000; let mut map = OrderMap::with_capacity(c); let keys = shuffled_keys(0..c); for &key in &keys { map.insert(OneShot(key.to_string()), 1); } let lookups = (5000..c) .map(|x| OneShot(x.to_string())) .collect::>(); b.iter(|| { let mut found = 0; for key in &lookups { found += map.get(key).is_some() as i32; } found }); } ordermap-1.1.0/src/arbitrary.rs000064400000000000000000000044771046102023000146040ustar 00000000000000#[cfg(feature = "arbitrary")] #[cfg_attr(docsrs, doc(cfg(feature = "arbitrary")))] mod impl_arbitrary { use crate::{OrderMap, OrderSet}; use arbitrary::{Arbitrary, Result, Unstructured}; use core::hash::{BuildHasher, Hash}; use indexmap::{IndexMap, IndexSet}; impl<'a, K, V, S> Arbitrary<'a> for OrderMap where K: Arbitrary<'a> + Hash + Eq, V: Arbitrary<'a>, S: BuildHasher + Default, { fn arbitrary(u: &mut Unstructured<'a>) -> Result { IndexMap::arbitrary(u).map(|inner| Self { inner }) } fn arbitrary_take_rest(u: Unstructured<'a>) -> Result { IndexMap::arbitrary_take_rest(u).map(|inner| Self { inner }) } } impl<'a, T, S> Arbitrary<'a> for OrderSet where T: Arbitrary<'a> + Hash + Eq, S: BuildHasher + Default, { fn arbitrary(u: &mut Unstructured<'a>) -> Result { IndexSet::arbitrary(u).map(|inner| Self { inner }) } fn arbitrary_take_rest(u: Unstructured<'a>) -> Result { IndexSet::arbitrary_take_rest(u).map(|inner| Self { inner }) } } } #[cfg(feature = "quickcheck")] #[cfg_attr(docsrs, doc(cfg(feature = "quickcheck")))] mod impl_quickcheck { use crate::{OrderMap, OrderSet}; use alloc::boxed::Box; use core::hash::{BuildHasher, Hash}; use indexmap::{IndexMap, IndexSet}; use quickcheck::{Arbitrary, Gen}; impl Arbitrary for OrderMap where K: Arbitrary + Hash + Eq, V: Arbitrary, S: BuildHasher + Default + Clone + 'static, { fn arbitrary(g: &mut Gen) -> Self { Self { inner: IndexMap::arbitrary(g), } } fn shrink(&self) -> Box> { Box::new(self.inner.shrink().map(|inner| Self { inner })) } } impl Arbitrary for OrderSet where T: Arbitrary + Hash + Eq, S: BuildHasher + Default + Clone + 'static, { fn arbitrary(g: &mut Gen) -> Self { Self { inner: IndexSet::arbitrary(g), } } fn shrink(&self) -> Box> { Box::new(self.inner.shrink().map(|inner| Self { inner })) } } } ordermap-1.1.0/src/borsh.rs000064400000000000000000000042321046102023000137070ustar 00000000000000#![cfg_attr(docsrs, doc(cfg(feature = "borsh")))] use crate::{OrderMap, OrderSet}; use borsh::io::{Read, Result, Write}; use borsh::{BorshDeserialize, BorshSerialize}; use core::hash::BuildHasher; use core::hash::Hash; impl BorshSerialize for OrderMap where K: BorshSerialize, V: BorshSerialize, { #[inline] fn serialize(&self, writer: &mut W) -> Result<()> { self.inner.serialize(writer) } } impl BorshDeserialize for OrderMap where K: BorshDeserialize + Eq + Hash, V: BorshDeserialize, S: BuildHasher + Default, { #[inline] fn deserialize_reader(reader: &mut R) -> Result { Ok(Self { inner: <_>::deserialize_reader(reader)?, }) } } impl BorshSerialize for OrderSet where T: BorshSerialize, { #[inline] fn serialize(&self, writer: &mut W) -> Result<()> { self.inner.serialize(writer) } } impl BorshDeserialize for OrderSet where T: BorshDeserialize + Eq + Hash, S: BuildHasher + Default, { #[inline] fn deserialize_reader(reader: &mut R) -> Result { Ok(Self { inner: <_>::deserialize_reader(reader)?, }) } } #[cfg(test)] mod borsh_tests { use super::*; #[test] fn map_borsh_roundtrip() { let original_map: OrderMap = { let mut map = OrderMap::new(); map.insert(1, 2); map.insert(3, 4); map.insert(5, 6); map }; let serialized_map = borsh::to_vec(&original_map).unwrap(); let deserialized_map: OrderMap = BorshDeserialize::try_from_slice(&serialized_map).unwrap(); assert_eq!(original_map, deserialized_map); } #[test] fn set_borsh_roundtrip() { let original_map: OrderSet = [1, 2, 3, 4, 5, 6].into_iter().collect(); let serialized_map = borsh::to_vec(&original_map).unwrap(); let deserialized_map: OrderSet = BorshDeserialize::try_from_slice(&serialized_map).unwrap(); assert_eq!(original_map, deserialized_map); } } ordermap-1.1.0/src/lib.rs000064400000000000000000000111071046102023000133370ustar 00000000000000#![no_std] //! [`OrderMap`] is a hash table where the iteration order of the key-value //! pairs is independent of the hash values of the keys. //! //! [`OrderSet`] is a corresponding hash set using the same implementation and //! with similar properties. //! //! ### Highlights //! //! [`OrderMap`] and [`OrderSet`] are drop-in compatible with the std `HashMap` //! and `HashSet`, but they also have some features of note: //! //! - The ordering semantics (see their documentation for details) //! - Sorting methods and the [`.pop()`][OrderMap::pop] methods. //! - The [`Equivalent`] trait, which offers more flexible equality definitions //! between borrowed and owned versions of keys. //! - The [`MutableKeys`][map::MutableKeys] trait, which gives opt-in mutable //! access to map keys, and [`MutableValues`][set::MutableValues] for sets. //! //! ### Feature Flags //! //! To reduce the amount of compiled code in the crate by default, certain //! features are gated behind [feature flags]. These allow you to opt in to (or //! out of) functionality. Below is a list of the features available in this //! crate. //! //! * `std`: Enables features which require the Rust standard library. For more //! information see the section on [`no_std`]. //! * `rayon`: Enables parallel iteration and other parallel methods. //! * `serde`: Adds implementations for [`Serialize`] and [`Deserialize`] //! to [`OrderMap`] and [`OrderSet`]. Alternative implementations for //! (de)serializing [`OrderMap`] as an ordered sequence are available in the //! [`map::serde_seq`] module. //! * `borsh`: Adds implementations for [`BorshSerialize`] and [`BorshDeserialize`] //! to [`OrderMap`] and [`OrderSet`]. //! * `arbitrary`: Adds implementations for the [`arbitrary::Arbitrary`] trait //! to [`OrderMap`] and [`OrderSet`]. //! * `quickcheck`: Adds implementations for the [`quickcheck::Arbitrary`] trait //! to [`OrderMap`] and [`OrderSet`]. //! //! _Note: only the `std` feature is enabled by default._ //! //! [feature flags]: https://doc.rust-lang.org/cargo/reference/manifest.html#the-features-section //! [`no_std`]: #no-standard-library-targets //! [`Serialize`]: `::serde_core::Serialize` //! [`Deserialize`]: `::serde_core::Deserialize` //! [`BorshSerialize`]: `::borsh::BorshSerialize` //! [`BorshDeserialize`]: `::borsh::BorshDeserialize` //! [`arbitrary::Arbitrary`]: `::arbitrary::Arbitrary` //! [`quickcheck::Arbitrary`]: `::quickcheck::Arbitrary` //! //! ### Alternate Hashers //! //! [`OrderMap`] and [`OrderSet`] have a default hasher type //! [`S = RandomState`][std::hash::RandomState], //! just like the standard `HashMap` and `HashSet`, which is resistant to //! HashDoS attacks but not the most performant. Type aliases can make it easier //! to use alternate hashers: //! //! ``` //! use fnv::FnvBuildHasher; //! use ordermap::{OrderMap, OrderSet}; //! //! type FnvOrderMap = OrderMap; //! type FnvOrderSet = OrderSet; //! //! let std: OrderSet = (0..100).collect(); //! let fnv: FnvOrderSet = (0..100).collect(); //! assert_eq!(std, fnv); //! ``` //! //! ### Rust Version //! //! This version of ordermap requires Rust 1.82 or later. //! //! The ordermap 1.x release series will use a carefully considered version //! upgrade policy, where in a later 1.x version, we will raise the minimum //! required Rust version. //! //! ## No Standard Library Targets //! //! This crate supports being built without `std`, requiring `alloc` instead. //! This is chosen by disabling the default "std" cargo feature, by adding //! `default-features = false` to your dependency specification. //! //! - Creating maps and sets using [`new`][OrderMap::new] and //! [`with_capacity`][OrderMap::with_capacity] is unavailable without `std`. //! Use methods [`OrderMap::default`], [`with_hasher`][OrderMap::with_hasher], //! [`with_capacity_and_hasher`][OrderMap::with_capacity_and_hasher] instead. //! A no-std compatible hasher will be needed as well, for example //! from the crate `twox-hash`. //! - Macros [`ordermap!`] and [`orderset!`] are unavailable without `std`. Use //! the macros [`ordermap_with_default!`] and [`orderset_with_default!`] instead. #![cfg_attr(docsrs, feature(doc_cfg))] extern crate alloc; #[cfg(feature = "std")] #[cfg_attr(test, macro_use)] extern crate std; mod arbitrary; #[macro_use] mod macros; #[cfg(feature = "borsh")] mod borsh; #[cfg(feature = "serde")] mod serde; #[cfg(feature = "sval")] mod sval; pub mod map; pub mod set; pub use crate::map::OrderMap; pub use crate::set::OrderSet; pub use indexmap::{Equivalent, GetDisjointMutError, TryReserveError}; ordermap-1.1.0/src/macros.rs000064400000000000000000000103411046102023000140540ustar 00000000000000/// Create an [`OrderMap`][crate::OrderMap] from a list of key-value pairs /// and a [`BuildHasherDefault`][core::hash::BuildHasherDefault]-wrapped custom hasher. /// /// ## Example /// /// ``` /// use ordermap::ordermap_with_default; /// use fnv::FnvHasher; /// /// let map = ordermap_with_default!{ /// FnvHasher; /// "a" => 1, /// "b" => 2, /// }; /// assert_eq!(map["a"], 1); /// assert_eq!(map["b"], 2); /// assert_eq!(map.get("c"), None); /// /// // "a" is the first key /// assert_eq!(map.keys().next(), Some(&"a")); /// ``` #[macro_export] macro_rules! ordermap_with_default { ($H:ty; $($key:expr => $value:expr,)+) => { $crate::ordermap_with_default!($H; $($key => $value),+) }; ($H:ty; $($key:expr => $value:expr),*) => {{ let builder = ::core::hash::BuildHasherDefault::<$H>::default(); const CAP: usize = <[()]>::len(&[$({ stringify!($key); }),*]); #[allow(unused_mut)] // Specify your custom `H` (must implement Default + Hasher) as the hasher: let mut map = $crate::OrderMap::with_capacity_and_hasher(CAP, builder); $( map.insert($key, $value); )* map }}; } #[cfg(feature = "std")] #[cfg_attr(docsrs, doc(cfg(feature = "std")))] #[macro_export] /// Create an [`OrderMap`][crate::OrderMap] from a list of key-value pairs /// /// ## Example /// /// ``` /// use ordermap::ordermap; /// /// let map = ordermap!{ /// "a" => 1, /// "b" => 2, /// }; /// assert_eq!(map["a"], 1); /// assert_eq!(map["b"], 2); /// assert_eq!(map.get("c"), None); /// /// // "a" is the first key /// assert_eq!(map.keys().next(), Some(&"a")); /// ``` macro_rules! ordermap { ($($key:expr => $value:expr,)+) => { $crate::ordermap!($($key => $value),+) }; ($($key:expr => $value:expr),*) => { { // Note: `stringify!($key)` is just here to consume the repetition, // but we throw away that string literal during constant evaluation. const CAP: usize = <[()]>::len(&[$({ stringify!($key); }),*]); let mut map = $crate::OrderMap::with_capacity(CAP); $( map.insert($key, $value); )* map } }; } /// Create an [`OrderSet`][crate::OrderSet] from a list of values /// and a [`BuildHasherDefault`][core::hash::BuildHasherDefault]-wrapped custom hasher. /// /// ## Example /// /// ``` /// use ordermap::orderset_with_default; /// use fnv::FnvHasher; /// /// let set = orderset_with_default!{ /// FnvHasher; /// "a", /// "b", /// }; /// assert!(set.contains("a")); /// assert!(set.contains("b")); /// assert!(!set.contains("c")); /// /// // "a" is the first value /// assert_eq!(set.iter().next(), Some(&"a")); /// ``` #[macro_export] macro_rules! orderset_with_default { ($H:ty; $($value:expr,)+) => { $crate::orderset_with_default!($H; $($value),+) }; ($H:ty; $($value:expr),*) => {{ let builder = ::core::hash::BuildHasherDefault::<$H>::default(); const CAP: usize = <[()]>::len(&[$({ stringify!($value); }),*]); #[allow(unused_mut)] // Specify your custom `H` (must implement Default + Hash) as the hasher: let mut set = $crate::OrderSet::with_capacity_and_hasher(CAP, builder); $( set.insert($value); )* set }}; } #[cfg(feature = "std")] #[cfg_attr(docsrs, doc(cfg(feature = "std")))] #[macro_export] /// Create an [`OrderSet`][crate::OrderSet] from a list of values /// /// ## Example /// /// ``` /// use ordermap::orderset; /// /// let set = orderset!{ /// "a", /// "b", /// }; /// assert!(set.contains("a")); /// assert!(set.contains("b")); /// assert!(!set.contains("c")); /// /// // "a" is the first value /// assert_eq!(set.iter().next(), Some(&"a")); /// ``` macro_rules! orderset { ($($value:expr,)+) => { $crate::orderset!($($value),+) }; ($($value:expr),*) => { { // Note: `stringify!($value)` is just here to consume the repetition, // but we throw away that string literal during constant evaluation. const CAP: usize = <[()]>::len(&[$({ stringify!($value); }),*]); let mut set = $crate::OrderSet::with_capacity(CAP); $( set.insert($value); )* set } }; } ordermap-1.1.0/src/map/entry.rs000064400000000000000000000447411046102023000145210ustar 00000000000000use core::cmp::Ordering; use core::fmt; use indexmap::map as ix; #[cfg(doc)] use alloc::vec::Vec; /// Entry for an existing key-value pair in an [`OrderMap`][crate::OrderMap] /// or a vacant location to insert one. pub enum Entry<'a, K, V> { /// Existing slot with equivalent key. Occupied(OccupiedEntry<'a, K, V>), /// Vacant slot (no equivalent key in the map). Vacant(VacantEntry<'a, K, V>), } impl<'a, K, V> Entry<'a, K, V> { pub(super) fn new(entry: ix::Entry<'a, K, V>) -> Self { match entry { ix::Entry::Occupied(inner) => Self::Occupied(OccupiedEntry { inner }), ix::Entry::Vacant(inner) => Self::Vacant(VacantEntry { inner }), } } /// Return the index where the key-value pair exists or will be inserted. pub fn index(&self) -> usize { match *self { Entry::Occupied(ref entry) => entry.index(), Entry::Vacant(ref entry) => entry.index(), } } /// Sets the value of the entry (after inserting if vacant), and returns an `OccupiedEntry`. /// /// Computes in **O(1)** time (amortized average). pub fn insert_entry(self, value: V) -> OccupiedEntry<'a, K, V> { match self { Entry::Occupied(mut entry) => { entry.insert(value); entry } Entry::Vacant(entry) => entry.insert_entry(value), } } /// Inserts the given default value in the entry if it is vacant and returns a mutable /// reference to it. Otherwise a mutable reference to an already existent value is returned. /// /// Computes in **O(1)** time (amortized average). pub fn or_insert(self, default: V) -> &'a mut V { match self { Entry::Occupied(entry) => entry.into_mut(), Entry::Vacant(entry) => entry.insert(default), } } /// Inserts the result of the `call` function in the entry if it is vacant and returns a mutable /// reference to it. Otherwise a mutable reference to an already existent value is returned. /// /// Computes in **O(1)** time (amortized average). pub fn or_insert_with(self, call: F) -> &'a mut V where F: FnOnce() -> V, { match self { Entry::Occupied(entry) => entry.into_mut(), Entry::Vacant(entry) => entry.insert(call()), } } /// Inserts the result of the `call` function with a reference to the entry's key if it is /// vacant, and returns a mutable reference to the new value. Otherwise a mutable reference to /// an already existent value is returned. /// /// Computes in **O(1)** time (amortized average). pub fn or_insert_with_key(self, call: F) -> &'a mut V where F: FnOnce(&K) -> V, { match self { Entry::Occupied(entry) => entry.into_mut(), Entry::Vacant(entry) => { let value = call(&entry.key()); entry.insert(value) } } } /// Gets a reference to the entry's key, either within the map if occupied, /// or else the new key that was used to find the entry. pub fn key(&self) -> &K { match *self { Entry::Occupied(ref entry) => entry.key(), Entry::Vacant(ref entry) => entry.key(), } } /// Modifies the entry if it is occupied. pub fn and_modify(mut self, f: F) -> Self where F: FnOnce(&mut V), { if let Entry::Occupied(entry) = &mut self { f(entry.get_mut()); } self } /// Inserts a default-constructed value in the entry if it is vacant and returns a mutable /// reference to it. Otherwise a mutable reference to an already existent value is returned. /// /// Computes in **O(1)** time (amortized average). pub fn or_default(self) -> &'a mut V where V: Default, { match self { Entry::Occupied(entry) => entry.into_mut(), Entry::Vacant(entry) => entry.insert(V::default()), } } } impl fmt::Debug for Entry<'_, K, V> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let mut tuple = f.debug_tuple("Entry"); match self { Entry::Vacant(v) => tuple.field(v), Entry::Occupied(o) => tuple.field(o), }; tuple.finish() } } /// A view into an occupied entry in an [`OrderMap`][crate::OrderMap]. /// It is part of the [`Entry`] enum. pub struct OccupiedEntry<'a, K, V> { pub(crate) inner: ix::OccupiedEntry<'a, K, V>, } impl<'a, K, V> OccupiedEntry<'a, K, V> { /// Return the index of the key-value pair #[inline] pub fn index(&self) -> usize { self.inner.index() } /// Gets a reference to the entry's key in the map. /// /// Note that this is not the key that was used to find the entry. There may be an observable /// difference if the key type has any distinguishing features outside of `Hash` and `Eq`, like /// extra fields or the memory address of an allocation. pub fn key(&self) -> &K { self.inner.key() } /// Gets a reference to the entry's value in the map. pub fn get(&self) -> &V { self.inner.get() } /// Gets a mutable reference to the entry's value in the map. /// /// If you need a reference which may outlive the destruction of the /// [`Entry`] value, see [`into_mut`][Self::into_mut]. pub fn get_mut(&mut self) -> &mut V { self.inner.get_mut() } /// Converts into a mutable reference to the entry's value in the map, /// with a lifetime bound to the map itself. pub fn into_mut(self) -> &'a mut V { self.inner.into_mut() } /// Sets the value of the entry to `value`, and returns the entry's old value. pub fn insert(&mut self, value: V) -> V { self.inner.insert(value) } /// Remove the key, value pair stored in the map for this entry, and return the value. /// /// **NOTE:** This is equivalent to indexmap's /// [`OccupiedEntry::shift_remove`][ix::OccupiedEntry::shift_remove], and /// like [`Vec::remove`], the pair is removed by shifting all of the /// elements that follow it, preserving their relative order. /// **This perturbs the index of all of those elements!** /// /// Computes in **O(n)** time (average). pub fn remove(self) -> V { self.inner.shift_remove() } /// Remove and return the key, value pair stored in the map for this entry /// /// **NOTE:** This is equivalent to indexmap's /// [`OccupiedEntry::shift_remove_entry`][ix::OccupiedEntry::shift_remove_entry], and /// like [`Vec::remove`], the pair is removed by shifting all of the /// elements that follow it, preserving their relative order. /// **This perturbs the index of all of those elements!** /// /// Computes in **O(n)** time (average). pub fn remove_entry(self) -> (K, V) { self.inner.shift_remove_entry() } /// Remove the key, value pair stored in the map for this entry, and return the value. /// /// Like [`Vec::swap_remove`], the pair is removed by swapping it with /// the last element of the map and popping it off. /// **This perturbs the position of what used to be the last element!** /// /// Computes in **O(1)** time (average). pub fn swap_remove(self) -> V { self.inner.swap_remove() } /// Remove and return the key, value pair stored in the map for this entry /// /// Like [`Vec::swap_remove`], the pair is removed by swapping it with /// the last element of the map and popping it off. /// **This perturbs the position of what used to be the last element!** /// /// Computes in **O(1)** time (average). pub fn swap_remove_entry(self) -> (K, V) { self.inner.swap_remove_entry() } /// Moves the position of the entry to a new index /// by shifting all other entries in-between. /// /// This is equivalent to [`OrderMap::move_index`][`crate::OrderMap::move_index`] /// coming `from` the current [`.index()`][Self::index]. /// /// * If `self.index() < to`, the other pairs will shift down while the targeted pair moves up. /// * If `self.index() > to`, the other pairs will shift up while the targeted pair moves down. /// /// ***Panics*** if `to` is out of bounds. /// /// Computes in **O(n)** time (average). #[track_caller] pub fn move_index(self, to: usize) { self.inner.move_index(to); } /// Swaps the position of entry with another. /// /// This is equivalent to [`OrderMap::swap_indices`][`crate::OrderMap::swap_indices`] /// with the current [`.index()`][Self::index] as one of the two being swapped. /// /// ***Panics*** if the `other` index is out of bounds. /// /// Computes in **O(1)** time (average). #[track_caller] pub fn swap_indices(self, other: usize) { self.inner.swap_indices(other); } } impl fmt::Debug for OccupiedEntry<'_, K, V> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("OccupiedEntry") .field("key", self.key()) .field("value", self.get()) .finish() } } impl<'a, K, V> From> for OccupiedEntry<'a, K, V> { fn from(entry: IndexedEntry<'a, K, V>) -> Self { Self { inner: entry.inner.into(), } } } /// A view into a vacant entry in an [`OrderMap`][crate::OrderMap]. /// It is part of the [`Entry`] enum. pub struct VacantEntry<'a, K, V> { pub(crate) inner: ix::VacantEntry<'a, K, V>, } impl<'a, K, V> VacantEntry<'a, K, V> { /// Return the index where a key-value pair may be inserted. pub fn index(&self) -> usize { self.inner.index() } /// Gets a reference to the key that was used to find the entry. pub fn key(&self) -> &K { self.inner.key() } /// Takes ownership of the key, leaving the entry vacant. pub fn into_key(self) -> K { self.inner.into_key() } /// Inserts the entry's key and the given value into the map, and returns a mutable reference /// to the value. pub fn insert(self, value: V) -> &'a mut V { self.inner.insert(value) } /// Inserts the entry's key and the given value into the map, and returns an `OccupiedEntry`. /// /// Computes in **O(1)** time (amortized average). pub fn insert_entry(self, value: V) -> OccupiedEntry<'a, K, V> { OccupiedEntry { inner: self.inner.insert_entry(value), } } /// Inserts the entry's key and the given value into the map at its ordered /// position among sorted keys, and returns the new index and a mutable /// reference to the value. /// /// If the existing keys are **not** already sorted, then the insertion /// index is unspecified (like [`slice::binary_search`]), but the key-value /// pair is inserted at that position regardless. /// /// Computes in **O(n)** time (average). pub fn insert_sorted(self, value: V) -> (usize, &'a mut V) where K: Ord, { self.inner.insert_sorted(value) } /// Inserts the entry's key and the given value into the map at its ordered /// position among keys sorted by `cmp`, and returns the new index and a /// mutable reference to the value. /// /// If the existing keys are **not** already sorted, then the insertion /// index is unspecified (like [`slice::binary_search`]), but the key-value /// pair is inserted at that position regardless. /// /// Computes in **O(n)** time (average). pub fn insert_sorted_by(self, value: V, cmp: F) -> (usize, &'a mut V) where F: FnMut(&K, &V, &K, &V) -> Ordering, { self.inner.insert_sorted_by(value, cmp) } /// Inserts the entry's key and the given value into the map at its ordered /// position using a sort-key extraction function, and returns the new index /// and a mutable reference to the value. /// /// If the existing keys are **not** already sorted, then the insertion /// index is unspecified (like [`slice::binary_search`]), but the key-value /// pair is inserted at that position regardless. /// /// Computes in **O(n)** time (average). pub fn insert_sorted_by_key(self, value: V, sort_key: F) -> (usize, &'a mut V) where B: Ord, F: FnMut(&K, &V) -> B, { self.inner.insert_sorted_by_key(value, sort_key) } /// Inserts the entry's key and the given value into the map at the given index, /// shifting others to the right, and returns a mutable reference to the value. /// /// ***Panics*** if `index` is out of bounds. /// /// Computes in **O(n)** time (average). #[track_caller] pub fn shift_insert(self, index: usize, value: V) -> &'a mut V { self.inner.shift_insert(index, value) } /// Replaces the key at the given index with this entry's key, returning the /// old key and an `OccupiedEntry` for that index. /// /// ***Panics*** if `index` is out of bounds. /// /// Computes in **O(1)** time (average). #[track_caller] pub fn replace_index(self, index: usize) -> (K, OccupiedEntry<'a, K, V>) { let (old_key, inner) = self.inner.replace_index(index); (old_key, OccupiedEntry { inner }) } } impl fmt::Debug for VacantEntry<'_, K, V> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_tuple("VacantEntry").field(self.key()).finish() } } /// A view into an occupied entry in an [`OrderMap`][crate::OrderMap] obtained by index. /// /// This `struct` is created from the [`get_index_entry`][crate::OrderMap::get_index_entry] method. pub struct IndexedEntry<'a, K, V> { pub(crate) inner: ix::IndexedEntry<'a, K, V>, } impl<'a, K, V> IndexedEntry<'a, K, V> { pub(super) fn new(inner: ix::IndexedEntry<'a, K, V>) -> Self { Self { inner } } /// Return the index of the key-value pair #[inline] pub fn index(&self) -> usize { self.inner.index() } /// Gets a reference to the entry's key in the map. pub fn key(&self) -> &K { self.inner.key() } /// Gets a reference to the entry's value in the map. pub fn get(&self) -> &V { self.inner.get() } /// Gets a mutable reference to the entry's value in the map. /// /// If you need a reference which may outlive the destruction of the /// `IndexedEntry` value, see [`into_mut`][Self::into_mut]. pub fn get_mut(&mut self) -> &mut V { self.inner.get_mut() } /// Sets the value of the entry to `value`, and returns the entry's old value. pub fn insert(&mut self, value: V) -> V { self.inner.insert(value) } /// Converts into a mutable reference to the entry's value in the map, /// with a lifetime bound to the map itself. pub fn into_mut(self) -> &'a mut V { self.inner.into_mut() } /// Remove and return the key, value pair stored in the map for this entry /// /// **NOTE:** This is equivalent to indexmap's /// [`IndexedEntry::shift_remove_entry`][ix::IndexedEntry::shift_remove_entry], and /// like [`Vec::remove`], the pair is removed by shifting all of the /// elements that follow it, preserving their relative order. /// **This perturbs the index of all of those elements!** /// /// Computes in **O(n)** time (average). pub fn remove_entry(self) -> (K, V) { self.inner.shift_remove_entry() } /// Remove the key, value pair stored in the map for this entry, and return the value. /// /// **NOTE:** This is equivalent to indexmap's /// [`IndexedEntry::shift_remove`][ix::IndexedEntry::shift_remove], and /// like [`Vec::remove`], the pair is removed by shifting all of the /// elements that follow it, preserving their relative order. /// **This perturbs the index of all of those elements!** /// /// Computes in **O(n)** time (average). pub fn remove(self) -> V { self.inner.shift_remove() } /// Remove and return the key, value pair stored in the map for this entry /// /// Like [`Vec::swap_remove`], the pair is removed by swapping it with /// the last element of the map and popping it off. /// **This perturbs the position of what used to be the last element!** /// /// Computes in **O(1)** time (average). pub fn swap_remove_entry(self) -> (K, V) { self.inner.swap_remove_entry() } /// Remove the key, value pair stored in the map for this entry, and return the value. /// /// Like [`Vec::swap_remove`], the pair is removed by swapping it with /// the last element of the map and popping it off. /// **This perturbs the position of what used to be the last element!** /// /// Computes in **O(1)** time (average). pub fn swap_remove(self) -> V { self.inner.swap_remove() } /// Moves the position of the entry to a new index /// by shifting all other entries in-between. /// /// This is equivalent to [`OrderMap::move_index`][`crate::OrderMap::move_index`] /// coming `from` the current [`.index()`][Self::index]. /// /// * If `self.index() < to`, the other pairs will shift down while the targeted pair moves up. /// * If `self.index() > to`, the other pairs will shift up while the targeted pair moves down. /// /// ***Panics*** if `to` is out of bounds. /// /// Computes in **O(n)** time (average). #[track_caller] pub fn move_index(self, to: usize) { self.inner.move_index(to) } /// Swaps the position of entry with another. /// /// This is equivalent to [`OrderMap::swap_indices`][`crate::OrderMap::swap_indices`] /// with the current [`.index()`][Self::index] as one of the two being swapped. /// /// ***Panics*** if the `other` index is out of bounds. /// /// Computes in **O(1)** time (average). #[track_caller] pub fn swap_indices(self, other: usize) { self.inner.swap_indices(other) } } impl fmt::Debug for IndexedEntry<'_, K, V> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("IndexedEntry") .field("index", &self.index()) .field("key", self.key()) .field("value", self.get()) .finish() } } impl<'a, K, V> From> for IndexedEntry<'a, K, V> { fn from(entry: OccupiedEntry<'a, K, V>) -> Self { Self { inner: entry.inner.into(), } } } ordermap-1.1.0/src/map/iter.rs000064400000000000000000000012361046102023000143130ustar 00000000000000use super::{IntoIter, Iter, IterMut, OrderMap}; impl<'a, K, V, S> IntoIterator for &'a OrderMap { type Item = (&'a K, &'a V); type IntoIter = Iter<'a, K, V>; fn into_iter(self) -> Self::IntoIter { self.inner.iter() } } impl<'a, K, V, S> IntoIterator for &'a mut OrderMap { type Item = (&'a K, &'a mut V); type IntoIter = IterMut<'a, K, V>; fn into_iter(self) -> Self::IntoIter { self.inner.iter_mut() } } impl IntoIterator for OrderMap { type Item = (K, V); type IntoIter = IntoIter; fn into_iter(self) -> Self::IntoIter { self.inner.into_iter() } } ordermap-1.1.0/src/map/mutable.rs000064400000000000000000000116701046102023000150040ustar 00000000000000use super::{Entry, Equivalent, IndexedEntry, IterMut2, OccupiedEntry, OrderMap, VacantEntry}; use core::hash::{BuildHasher, Hash}; use indexmap::map::MutableEntryKey as _; use indexmap::map::MutableKeys as _; /// Opt-in mutable access to [`OrderMap`] keys. /// /// These methods expose `&mut K`, mutable references to the key as it is stored /// in the map. /// You are allowed to modify the keys in the map **if the modification /// does not change the key's hash and equality**. /// /// If keys are modified erroneously, you can no longer look them up. /// This is sound (memory safe) but a logical error hazard (just like /// implementing `PartialEq`, `Eq`, or `Hash` incorrectly would be). /// /// `use` this trait to enable its methods for `OrderMap`. /// /// This trait is sealed and cannot be implemented for types outside this crate. #[expect(private_bounds)] pub trait MutableKeys: Sealed { type Key; type Value; /// Return item index, mutable reference to key and value /// /// Computes in **O(1)** time (average). fn get_full_mut2(&mut self, key: &Q) -> Option<(usize, &mut Self::Key, &mut Self::Value)> where Q: ?Sized + Hash + Equivalent; /// Return mutable reference to key and value at an index. /// /// Valid indices are `0 <= index < self.len()`. /// /// Computes in **O(1)** time. fn get_index_mut2(&mut self, index: usize) -> Option<(&mut Self::Key, &mut Self::Value)>; /// Return an iterator over the key-value pairs of the map, in their order fn iter_mut2(&mut self) -> IterMut2<'_, Self::Key, Self::Value>; /// Scan through each key-value pair in the map and keep those where the /// closure `keep` returns `true`. /// /// The elements are visited in order, and remaining elements keep their /// order. /// /// Computes in **O(n)** time (average). fn retain2(&mut self, keep: F) where F: FnMut(&mut Self::Key, &mut Self::Value) -> bool; } /// Opt-in mutable access to [`OrderMap`] keys. /// /// See [`MutableKeys`] for more information. impl MutableKeys for OrderMap where S: BuildHasher, { type Key = K; type Value = V; fn get_full_mut2(&mut self, key: &Q) -> Option<(usize, &mut K, &mut V)> where Q: ?Sized + Hash + Equivalent, { self.inner.get_full_mut2(key) } fn get_index_mut2(&mut self, index: usize) -> Option<(&mut K, &mut V)> { self.inner.get_index_mut2(index) } fn iter_mut2(&mut self) -> IterMut2<'_, Self::Key, Self::Value> { self.inner.iter_mut2() } fn retain2(&mut self, keep: F) where F: FnMut(&mut K, &mut V) -> bool, { self.inner.retain2(keep); } } /// Opt-in mutable access to [`Entry`] keys. /// /// These methods expose `&mut K`, mutable references to the key as it is stored /// in the map. /// You are allowed to modify the keys in the map **if the modification /// does not change the key's hash and equality**. /// /// If keys are modified erroneously, you can no longer look them up. /// This is sound (memory safe) but a logical error hazard (just like /// implementing `PartialEq`, `Eq`, or `Hash` incorrectly would be). /// /// `use` this trait to enable its methods for `Entry`. /// /// This trait is sealed and cannot be implemented for types outside this crate. #[expect(private_bounds)] pub trait MutableEntryKey: Sealed { type Key; /// Gets a mutable reference to the entry's key, either within the map if occupied, /// or else the new key that was used to find the entry. fn key_mut(&mut self) -> &mut Self::Key; } /// Opt-in mutable access to [`Entry`] keys. /// /// See [`MutableEntryKey`] for more information. impl MutableEntryKey for Entry<'_, K, V> { type Key = K; fn key_mut(&mut self) -> &mut Self::Key { match self { Entry::Occupied(e) => e.key_mut(), Entry::Vacant(e) => e.key_mut(), } } } /// Opt-in mutable access to [`OccupiedEntry`] keys. /// /// See [`MutableEntryKey`] for more information. impl MutableEntryKey for OccupiedEntry<'_, K, V> { type Key = K; fn key_mut(&mut self) -> &mut Self::Key { self.inner.key_mut() } } /// Opt-in mutable access to [`VacantEntry`] keys. /// /// See [`MutableEntryKey`] for more information. impl MutableEntryKey for VacantEntry<'_, K, V> { type Key = K; fn key_mut(&mut self) -> &mut Self::Key { self.inner.key_mut() } } /// Opt-in mutable access to [`IndexedEntry`] keys. /// /// See [`MutableEntryKey`] for more information. impl MutableEntryKey for IndexedEntry<'_, K, V> { type Key = K; fn key_mut(&mut self) -> &mut Self::Key { self.inner.key_mut() } } trait Sealed {} impl Sealed for OrderMap {} impl Sealed for Entry<'_, K, V> {} impl Sealed for OccupiedEntry<'_, K, V> {} impl Sealed for VacantEntry<'_, K, V> {} impl Sealed for IndexedEntry<'_, K, V> {} ordermap-1.1.0/src/map/raw_entry_v1.rs000064400000000000000000000523741046102023000160010ustar 00000000000000//! Opt-in access to the experimental raw entry API. //! //! This module is designed to mimic the raw entry API of [`HashMap`][std::collections::hash_map], //! matching its unstable state as of Rust 1.75. See the tracking issue //! [rust#56167](https://github.com/rust-lang/rust/issues/56167) for more details. //! //! The trait [`RawEntryApiV1`] and the `_v1` suffix on its methods are meant to insulate this for //! the future, in case later breaking changes are needed. If the standard library stabilizes its //! `hash_raw_entry` feature (or some replacement), matching *inherent* methods will be added to //! `OrderMap` without such an opt-in trait. use crate::{Equivalent, OrderMap}; use core::fmt; use core::hash::{BuildHasher, Hash}; use indexmap::map::raw_entry_v1 as ix; use indexmap::map::RawEntryApiV1 as _; #[cfg(doc)] use alloc::vec::Vec; /// Opt-in access to the experimental raw entry API. /// /// See the [`raw_entry_v1`][self] module documentation for more information. #[expect(private_bounds)] pub trait RawEntryApiV1: Sealed { /// Creates a raw immutable entry builder for the [`OrderMap`]. /// /// Raw entries provide the lowest level of control for searching and /// manipulating a map. They must be manually initialized with a hash and /// then manually searched. /// /// This is useful for /// * Hash memoization /// * Using a search key that doesn't work with the [`Equivalent`] trait /// * Using custom comparison logic without newtype wrappers /// /// Unless you are in such a situation, higher-level and more foolproof APIs like /// [`get`][OrderMap::get] should be preferred. /// /// Immutable raw entries have very limited use; you might instead want /// [`raw_entry_mut_v1`][Self::raw_entry_mut_v1]. /// /// # Examples /// /// ``` /// use core::hash::BuildHasher; /// use ordermap::map::{OrderMap, RawEntryApiV1}; /// /// let mut map = OrderMap::new(); /// map.extend([("a", 100), ("b", 200), ("c", 300)]); /// /// for k in ["a", "b", "c", "d", "e", "f"] { /// let hash = map.hasher().hash_one(k); /// let i = map.get_index_of(k); /// let v = map.get(k); /// let kv = map.get_key_value(k); /// let ikv = map.get_full(k); /// /// println!("Key: {} and value: {:?}", k, v); /// /// assert_eq!(map.raw_entry_v1().from_key(k), kv); /// assert_eq!(map.raw_entry_v1().from_hash(hash, |q| *q == k), kv); /// assert_eq!(map.raw_entry_v1().from_key_hashed_nocheck(hash, k), kv); /// assert_eq!(map.raw_entry_v1().from_hash_full(hash, |q| *q == k), ikv); /// assert_eq!(map.raw_entry_v1().index_from_hash(hash, |q| *q == k), i); /// } /// ``` fn raw_entry_v1(&self) -> RawEntryBuilder<'_, K, V, S>; /// Creates a raw entry builder for the [`OrderMap`]. /// /// Raw entries provide the lowest level of control for searching and /// manipulating a map. They must be manually initialized with a hash and /// then manually searched. After this, insertions into a vacant entry /// still require an owned key to be provided. /// /// Raw entries are useful for such exotic situations as: /// /// * Hash memoization /// * Deferring the creation of an owned key until it is known to be required /// * Using a search key that doesn't work with the [`Equivalent`] trait /// * Using custom comparison logic without newtype wrappers /// /// Because raw entries provide much more low-level control, it's much easier /// to put the `OrderMap` into an inconsistent state which, while memory-safe, /// will cause the map to produce seemingly random results. Higher-level and more /// foolproof APIs like [`entry`][OrderMap::entry] should be preferred when possible. /// /// Raw entries give mutable access to the keys. This must not be used /// to modify how the key would compare or hash, as the map will not re-evaluate /// where the key should go, meaning the keys may become "lost" if their /// location does not reflect their state. For instance, if you change a key /// so that the map now contains keys which compare equal, search may start /// acting erratically, with two keys randomly masking each other. Implementations /// are free to assume this doesn't happen (within the limits of memory-safety). /// /// # Examples /// /// ``` /// use core::hash::BuildHasher; /// use ordermap::map::{OrderMap, RawEntryApiV1}; /// use ordermap::map::raw_entry_v1::RawEntryMut; /// /// let mut map = OrderMap::new(); /// map.extend([("a", 100), ("b", 200), ("c", 300)]); /// /// // Existing key (insert and update) /// match map.raw_entry_mut_v1().from_key("a") { /// RawEntryMut::Vacant(_) => unreachable!(), /// RawEntryMut::Occupied(mut view) => { /// assert_eq!(view.index(), 0); /// assert_eq!(view.get(), &100); /// let v = view.get_mut(); /// let new_v = (*v) * 10; /// *v = new_v; /// assert_eq!(view.insert(1111), 1000); /// } /// } /// /// assert_eq!(map["a"], 1111); /// assert_eq!(map.len(), 3); /// /// // Existing key (take) /// let hash = map.hasher().hash_one("c"); /// match map.raw_entry_mut_v1().from_key_hashed_nocheck(hash, "c") { /// RawEntryMut::Vacant(_) => unreachable!(), /// RawEntryMut::Occupied(view) => { /// assert_eq!(view.index(), 2); /// assert_eq!(view.remove_entry(), ("c", 300)); /// } /// } /// assert_eq!(map.raw_entry_v1().from_key("c"), None); /// assert_eq!(map.len(), 2); /// /// // Nonexistent key (insert and update) /// let key = "d"; /// let hash = map.hasher().hash_one(key); /// match map.raw_entry_mut_v1().from_hash(hash, |q| *q == key) { /// RawEntryMut::Occupied(_) => unreachable!(), /// RawEntryMut::Vacant(view) => { /// assert_eq!(view.index(), 2); /// let (k, value) = view.insert("d", 4000); /// assert_eq!((*k, *value), ("d", 4000)); /// *value = 40000; /// } /// } /// assert_eq!(map["d"], 40000); /// assert_eq!(map.len(), 3); /// /// match map.raw_entry_mut_v1().from_hash(hash, |q| *q == key) { /// RawEntryMut::Vacant(_) => unreachable!(), /// RawEntryMut::Occupied(view) => { /// assert_eq!(view.index(), 2); /// assert_eq!(view.swap_remove_entry(), ("d", 40000)); /// } /// } /// assert_eq!(map.get("d"), None); /// assert_eq!(map.len(), 2); /// ``` fn raw_entry_mut_v1(&mut self) -> RawEntryBuilderMut<'_, K, V, S>; } impl RawEntryApiV1 for OrderMap { fn raw_entry_v1(&self) -> RawEntryBuilder<'_, K, V, S> { RawEntryBuilder { inner: self.inner.raw_entry_v1(), } } fn raw_entry_mut_v1(&mut self) -> RawEntryBuilderMut<'_, K, V, S> { RawEntryBuilderMut { inner: self.inner.raw_entry_mut_v1(), } } } /// A builder for computing where in an [`OrderMap`] a key-value pair would be stored. /// /// This `struct` is created by the [`OrderMap::raw_entry_v1`] method, provided by the /// [`RawEntryApiV1`] trait. See its documentation for more. pub struct RawEntryBuilder<'a, K, V, S> { inner: ix::RawEntryBuilder<'a, K, V, S>, } impl fmt::Debug for RawEntryBuilder<'_, K, V, S> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("RawEntryBuilder").finish_non_exhaustive() } } impl<'a, K, V, S> RawEntryBuilder<'a, K, V, S> { /// Access an entry by key. pub fn from_key(self, key: &Q) -> Option<(&'a K, &'a V)> where S: BuildHasher, Q: ?Sized + Hash + Equivalent, { self.inner.from_key(key) } /// Access an entry by a key and its hash. pub fn from_key_hashed_nocheck(self, hash: u64, key: &Q) -> Option<(&'a K, &'a V)> where Q: ?Sized + Equivalent, { self.inner.from_key_hashed_nocheck(hash, key) } /// Access an entry by hash. pub fn from_hash(self, hash: u64, is_match: F) -> Option<(&'a K, &'a V)> where F: FnMut(&K) -> bool, { self.inner.from_hash(hash, is_match) } /// Access an entry by hash, including its index. pub fn from_hash_full(self, hash: u64, is_match: F) -> Option<(usize, &'a K, &'a V)> where F: FnMut(&K) -> bool, { self.inner.from_hash_full(hash, is_match) } /// Access the index of an entry by hash. pub fn index_from_hash(self, hash: u64, is_match: F) -> Option where F: FnMut(&K) -> bool, { self.inner.index_from_hash(hash, is_match) } } /// A builder for computing where in an [`OrderMap`] a key-value pair would be stored. /// /// This `struct` is created by the [`OrderMap::raw_entry_mut_v1`] method, provided by the /// [`RawEntryApiV1`] trait. See its documentation for more. pub struct RawEntryBuilderMut<'a, K, V, S> { inner: ix::RawEntryBuilderMut<'a, K, V, S>, } impl fmt::Debug for RawEntryBuilderMut<'_, K, V, S> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("RawEntryBuilderMut").finish_non_exhaustive() } } impl<'a, K, V, S> RawEntryBuilderMut<'a, K, V, S> { /// Access an entry by key. pub fn from_key(self, key: &Q) -> RawEntryMut<'a, K, V, S> where S: BuildHasher, Q: ?Sized + Hash + Equivalent, { RawEntryMut::new(self.inner.from_key(key)) } /// Access an entry by a key and its hash. pub fn from_key_hashed_nocheck(self, hash: u64, key: &Q) -> RawEntryMut<'a, K, V, S> where Q: ?Sized + Equivalent, { RawEntryMut::new(self.inner.from_key_hashed_nocheck(hash, key)) } /// Access an entry by hash. pub fn from_hash(self, hash: u64, is_match: F) -> RawEntryMut<'a, K, V, S> where F: FnMut(&K) -> bool, { RawEntryMut::new(self.inner.from_hash(hash, is_match)) } } /// Raw entry for an existing key-value pair or a vacant location to /// insert one. pub enum RawEntryMut<'a, K, V, S> { /// Existing slot with equivalent key. Occupied(RawOccupiedEntryMut<'a, K, V, S>), /// Vacant slot (no equivalent key in the map). Vacant(RawVacantEntryMut<'a, K, V, S>), } impl fmt::Debug for RawEntryMut<'_, K, V, S> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let mut tuple = f.debug_tuple("RawEntryMut"); match self { Self::Vacant(v) => tuple.field(v), Self::Occupied(o) => tuple.field(o), }; tuple.finish() } } impl<'a, K, V, S> RawEntryMut<'a, K, V, S> { fn new(entry: ix::RawEntryMut<'a, K, V, S>) -> Self { match entry { ix::RawEntryMut::Occupied(inner) => Self::Occupied(RawOccupiedEntryMut { inner }), ix::RawEntryMut::Vacant(inner) => Self::Vacant(RawVacantEntryMut { inner }), } } /// Return the index where the key-value pair exists or may be inserted. #[inline] pub fn index(&self) -> usize { match self { Self::Occupied(entry) => entry.index(), Self::Vacant(entry) => entry.index(), } } /// Inserts the given default key and value in the entry if it is vacant and returns mutable /// references to them. Otherwise mutable references to an already existent pair are returned. pub fn or_insert(self, default_key: K, default_value: V) -> (&'a mut K, &'a mut V) where K: Hash, S: BuildHasher, { match self { Self::Occupied(entry) => entry.into_key_value_mut(), Self::Vacant(entry) => entry.insert(default_key, default_value), } } /// Inserts the result of the `call` function in the entry if it is vacant and returns mutable /// references to them. Otherwise mutable references to an already existent pair are returned. pub fn or_insert_with(self, call: F) -> (&'a mut K, &'a mut V) where F: FnOnce() -> (K, V), K: Hash, S: BuildHasher, { match self { Self::Occupied(entry) => entry.into_key_value_mut(), Self::Vacant(entry) => { let (key, value) = call(); entry.insert(key, value) } } } /// Modifies the entry if it is occupied. pub fn and_modify(mut self, f: F) -> Self where F: FnOnce(&mut K, &mut V), { if let Self::Occupied(entry) = &mut self { let (k, v) = entry.get_key_value_mut(); f(k, v); } self } } /// A raw view into an occupied entry in an [`OrderMap`]. /// It is part of the [`RawEntryMut`] enum. pub struct RawOccupiedEntryMut<'a, K, V, S> { inner: ix::RawOccupiedEntryMut<'a, K, V, S>, } impl fmt::Debug for RawOccupiedEntryMut<'_, K, V, S> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("RawOccupiedEntryMut") .field("key", self.key()) .field("value", self.get()) .finish_non_exhaustive() } } impl<'a, K, V, S> RawOccupiedEntryMut<'a, K, V, S> { /// Return the index of the key-value pair #[inline] pub fn index(&self) -> usize { self.inner.index() } /// Gets a reference to the entry's key in the map. /// /// Note that this is not the key that was used to find the entry. There may be an observable /// difference if the key type has any distinguishing features outside of `Hash` and `Eq`, like /// extra fields or the memory address of an allocation. pub fn key(&self) -> &K { self.inner.key() } /// Gets a mutable reference to the entry's key in the map. /// /// Note that this is not the key that was used to find the entry. There may be an observable /// difference if the key type has any distinguishing features outside of `Hash` and `Eq`, like /// extra fields or the memory address of an allocation. pub fn key_mut(&mut self) -> &mut K { self.inner.key_mut() } /// Converts into a mutable reference to the entry's key in the map, /// with a lifetime bound to the map itself. /// /// Note that this is not the key that was used to find the entry. There may be an observable /// difference if the key type has any distinguishing features outside of `Hash` and `Eq`, like /// extra fields or the memory address of an allocation. pub fn into_key(self) -> &'a mut K { self.inner.into_key() } /// Gets a reference to the entry's value in the map. pub fn get(&self) -> &V { self.inner.get() } /// Gets a mutable reference to the entry's value in the map. /// /// If you need a reference which may outlive the destruction of the /// [`RawEntryMut`] value, see [`into_mut`][Self::into_mut]. pub fn get_mut(&mut self) -> &mut V { self.inner.get_mut() } /// Converts into a mutable reference to the entry's value in the map, /// with a lifetime bound to the map itself. pub fn into_mut(self) -> &'a mut V { self.inner.into_mut() } /// Gets a reference to the entry's key and value in the map. pub fn get_key_value(&self) -> (&K, &V) { self.inner.get_key_value() } /// Gets a reference to the entry's key and value in the map. pub fn get_key_value_mut(&mut self) -> (&mut K, &mut V) { self.inner.get_key_value_mut() } /// Converts into a mutable reference to the entry's key and value in the map, /// with a lifetime bound to the map itself. pub fn into_key_value_mut(self) -> (&'a mut K, &'a mut V) { self.inner.into_key_value_mut() } /// Sets the value of the entry, and returns the entry's old value. pub fn insert(&mut self, value: V) -> V { self.inner.insert(value) } /// Sets the key of the entry, and returns the entry's old key. pub fn insert_key(&mut self, key: K) -> K { self.inner.insert_key(key) } /// Remove the key, value pair stored in the map for this entry, and return the value. /// /// **NOTE:** This is equivalent to indexmap's /// [`RawOccupiedEntryMut::shift_remove`][ix::RawOccupiedEntryMut::shift_remove], and /// like [`Vec::remove`], the pair is removed by shifting all of the /// elements that follow it, preserving their relative order. /// **This perturbs the index of all of those elements!** /// /// Computes in **O(n)** time (average). pub fn remove(self) -> V { self.inner.shift_remove() } /// Remove the key, value pair stored in the map for this entry, and return the value. /// /// Like [`Vec::swap_remove`], the pair is removed by swapping it with /// the last element of the map and popping it off. /// **This perturbs the position of what used to be the last element!** /// /// Computes in **O(1)** time (average). pub fn swap_remove(self) -> V { self.inner.swap_remove() } /// Remove and return the key, value pair stored in the map for this entry /// /// **NOTE:** This is equivalent to indexmap's /// [`RawOccupiedEntryMut::shift_remove_entry`][ix::RawOccupiedEntryMut::shift_remove_entry], and /// like [`Vec::remove`], the pair is removed by shifting all of the /// elements that follow it, preserving their relative order. /// **This perturbs the index of all of those elements!** /// /// Computes in **O(n)** time (average). pub fn remove_entry(self) -> (K, V) { self.inner.shift_remove_entry() } /// Remove and return the key, value pair stored in the map for this entry /// /// Like [`Vec::swap_remove`], the pair is removed by swapping it with /// the last element of the map and popping it off. /// **This perturbs the position of what used to be the last element!** /// /// Computes in **O(1)** time (average). pub fn swap_remove_entry(self) -> (K, V) { self.inner.swap_remove_entry() } /// Moves the position of the entry to a new index /// by shifting all other entries in-between. /// /// This is equivalent to [`OrderMap::move_index`] /// coming `from` the current [`.index()`][Self::index]. /// /// * If `self.index() < to`, the other pairs will shift down while the targeted pair moves up. /// * If `self.index() > to`, the other pairs will shift up while the targeted pair moves down. /// /// ***Panics*** if `to` is out of bounds. /// /// Computes in **O(n)** time (average). #[track_caller] pub fn move_index(self, to: usize) { self.inner.move_index(to); } /// Swaps the position of entry with another. /// /// This is equivalent to [`OrderMap::swap_indices`] /// with the current [`.index()`][Self::index] as one of the two being swapped. /// /// ***Panics*** if the `other` index is out of bounds. /// /// Computes in **O(1)** time (average). #[track_caller] pub fn swap_indices(self, other: usize) { self.inner.swap_indices(other); } } /// A view into a vacant raw entry in an [`OrderMap`]. /// It is part of the [`RawEntryMut`] enum. pub struct RawVacantEntryMut<'a, K, V, S> { inner: ix::RawVacantEntryMut<'a, K, V, S>, } impl fmt::Debug for RawVacantEntryMut<'_, K, V, S> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("RawVacantEntryMut").finish_non_exhaustive() } } impl<'a, K, V, S> RawVacantEntryMut<'a, K, V, S> { /// Return the index where a key-value pair may be inserted. pub fn index(&self) -> usize { self.inner.index() } /// Inserts the given key and value into the map, /// and returns mutable references to them. pub fn insert(self, key: K, value: V) -> (&'a mut K, &'a mut V) where K: Hash, S: BuildHasher, { self.inner.insert(key, value) } /// Inserts the given key and value into the map with the provided hash, /// and returns mutable references to them. pub fn insert_hashed_nocheck(self, hash: u64, key: K, value: V) -> (&'a mut K, &'a mut V) { self.inner.insert_hashed_nocheck(hash, key, value) } /// Inserts the given key and value into the map at the given index, /// shifting others to the right, and returns mutable references to them. /// /// ***Panics*** if `index` is out of bounds. /// /// Computes in **O(n)** time (average). #[track_caller] pub fn shift_insert(self, index: usize, key: K, value: V) -> (&'a mut K, &'a mut V) where K: Hash, S: BuildHasher, { self.inner.shift_insert(index, key, value) } /// Inserts the given key and value into the map with the provided hash /// at the given index, and returns mutable references to them. /// /// ***Panics*** if `index` is out of bounds. /// /// Computes in **O(n)** time (average). #[track_caller] pub fn shift_insert_hashed_nocheck( self, index: usize, hash: u64, key: K, value: V, ) -> (&'a mut K, &'a mut V) { self.inner .shift_insert_hashed_nocheck(index, hash, key, value) } } trait Sealed {} impl Sealed for OrderMap {} ordermap-1.1.0/src/map/rayon.rs000064400000000000000000000226261046102023000145060ustar 00000000000000//! Parallel iterator types for [`OrderMap`] with [`rayon`]. //! //! You will rarely need to interact with this module directly unless you need to name one of the //! iterator types. pub use indexmap::map::rayon::{ IntoParIter, ParDrain, ParIter, ParIterMut, ParKeys, ParValues, ParValuesMut, }; use super::OrderMap; use core::cmp::Ordering; use core::hash::{BuildHasher, Hash}; use core::ops::RangeBounds; use rayon::prelude::*; impl IntoParallelIterator for OrderMap where K: Send, V: Send, { type Item = (K, V); type Iter = IntoParIter; fn into_par_iter(self) -> Self::Iter { self.inner.into_par_iter() } } impl<'a, K, V, S> IntoParallelIterator for &'a OrderMap where K: Sync, V: Sync, { type Item = (&'a K, &'a V); type Iter = ParIter<'a, K, V>; fn into_par_iter(self) -> Self::Iter { self.inner.par_iter() } } impl<'a, K, V, S> IntoParallelIterator for &'a mut OrderMap where K: Sync + Send, V: Send, { type Item = (&'a K, &'a mut V); type Iter = ParIterMut<'a, K, V>; fn into_par_iter(self) -> Self::Iter { self.inner.par_iter_mut() } } impl<'a, K, V, S> ParallelDrainRange for &'a mut OrderMap where K: Send, V: Send, { type Item = (K, V); type Iter = ParDrain<'a, K, V>; fn par_drain>(self, range: R) -> Self::Iter { self.inner.par_drain(range) } } /// Parallel iterator methods and other parallel methods. /// /// The following methods **require crate feature `"rayon"`**. /// /// See also the `IntoParallelIterator` implementations. impl OrderMap where K: Sync, V: Sync, { /// Return a parallel iterator over the keys of the map. /// /// While parallel iterators can process items in any order, their relative order /// in the map is still preserved for operations like `reduce` and `collect`. pub fn par_keys(&self) -> ParKeys<'_, K, V> { self.inner.par_keys() } /// Return a parallel iterator over the values of the map. /// /// While parallel iterators can process items in any order, their relative order /// in the map is still preserved for operations like `reduce` and `collect`. pub fn par_values(&self) -> ParValues<'_, K, V> { self.inner.par_values() } } impl OrderMap where K: PartialEq + Sync, V: Sync, { /// Returns `true` if `self` contains all of the same key-value pairs as `other`, /// in the same indexed order, determined in parallel. pub fn par_eq(&self, other: &OrderMap) -> bool where V: PartialEq, { self.len() == other.len() && self.par_iter().eq(other) } } impl OrderMap where K: Send, V: Send, { /// Return a parallel iterator over mutable references to the values of the map /// /// While parallel iterators can process items in any order, their relative order /// in the map is still preserved for operations like `reduce` and `collect`. pub fn par_values_mut(&mut self) -> ParValuesMut<'_, K, V> { self.inner.par_values_mut() } } impl OrderMap where K: Send, V: Send, { /// Sort the map's key-value pairs in parallel, by the default ordering of the keys. pub fn par_sort_keys(&mut self) where K: Ord, { self.inner.par_sort_keys(); } /// Sort the map's key-value pairs in place and in parallel, using the comparison /// function `cmp`. /// /// The comparison function receives two key and value pairs to compare (you /// can sort by keys or values or their combination as needed). pub fn par_sort_by(&mut self, cmp: F) where F: Fn(&K, &V, &K, &V) -> Ordering + Sync, { self.inner.par_sort_by(cmp); } /// Sort the key-value pairs of the map in parallel and return a by-value parallel /// iterator of the key-value pairs with the result. pub fn par_sorted_by(self, cmp: F) -> IntoParIter where F: Fn(&K, &V, &K, &V) -> Ordering + Sync, { self.inner.par_sorted_by(cmp) } /// Sort the map's key-value pairs in place and in parallel, using a sort-key extraction /// function. pub fn par_sort_by_key(&mut self, sort_key: F) where T: Ord, F: Fn(&K, &V) -> T + Sync, { self.inner.par_sort_by_key(sort_key) } /// Sort the map's key-value pairs in parallel, by the default ordering of the keys. pub fn par_sort_unstable_keys(&mut self) where K: Ord, { self.inner.par_sort_unstable_keys(); } /// Sort the map's key-value pairs in place and in parallel, using the comparison /// function `cmp`. /// /// The comparison function receives two key and value pairs to compare (you /// can sort by keys or values or their combination as needed). pub fn par_sort_unstable_by(&mut self, cmp: F) where F: Fn(&K, &V, &K, &V) -> Ordering + Sync, { self.inner.par_sort_unstable_by(cmp); } /// Sort the key-value pairs of the map in parallel and return a by-value parallel /// iterator of the key-value pairs with the result. pub fn par_sorted_unstable_by(self, cmp: F) -> IntoParIter where F: Fn(&K, &V, &K, &V) -> Ordering + Sync, { self.inner.par_sorted_unstable_by(cmp) } /// Sort the map's key-value pairs in place and in parallel, using a sort-key extraction /// function. pub fn par_sort_unstable_by_key(&mut self, sort_key: F) where T: Ord, F: Fn(&K, &V) -> T + Sync, { self.inner.par_sort_unstable_by_key(sort_key) } /// Sort the map's key-value pairs in place and in parallel, using a sort-key extraction /// function. pub fn par_sort_by_cached_key(&mut self, sort_key: F) where T: Ord + Send, F: Fn(&K, &V) -> T + Sync, { self.inner.par_sort_by_cached_key(sort_key) } } impl FromParallelIterator<(K, V)> for OrderMap where K: Eq + Hash + Send, V: Send, S: BuildHasher + Default + Send, { fn from_par_iter(iter: I) -> Self where I: IntoParallelIterator, { Self { inner: <_>::from_par_iter(iter), } } } impl ParallelExtend<(K, V)> for OrderMap where K: Eq + Hash + Send, V: Send, S: BuildHasher + Send, { fn par_extend(&mut self, iter: I) where I: IntoParallelIterator, { self.inner.par_extend(iter); } } impl<'a, K: 'a, V: 'a, S> ParallelExtend<(&'a K, &'a V)> for OrderMap where K: Copy + Eq + Hash + Send + Sync, V: Copy + Send + Sync, S: BuildHasher + Send, { fn par_extend(&mut self, iter: I) where I: IntoParallelIterator, { self.inner.par_extend(iter); } } #[cfg(test)] mod tests { use super::*; use std::vec::Vec; #[test] fn insert_order() { let insert = [0, 4, 2, 12, 8, 7, 11, 5, 3, 17, 19, 22, 23]; let mut map = OrderMap::new(); for &elt in &insert { map.insert(elt, ()); } assert_eq!(map.par_keys().count(), map.len()); assert_eq!(map.par_keys().count(), insert.len()); insert.par_iter().zip(map.par_keys()).for_each(|(a, b)| { assert_eq!(a, b); }); (0..insert.len()) .into_par_iter() .zip(map.par_keys()) .for_each(|(i, k)| { assert_eq!(map.get_index(i).unwrap().0, k); }); } #[test] fn partial_eq_and_eq() { let mut map_a = OrderMap::new(); map_a.insert(1, "1"); map_a.insert(2, "2"); let mut map_b = map_a.clone(); assert!(map_a.par_eq(&map_b)); map_b.swap_remove(&1); assert!(!map_a.par_eq(&map_b)); map_b.insert(3, "3"); assert!(!map_a.par_eq(&map_b)); } #[test] fn extend() { let mut map = OrderMap::new(); map.par_extend(vec![(&1, &2), (&3, &4)]); map.par_extend(vec![(5, 6)]); assert_eq!( map.into_par_iter().collect::>(), vec![(1, 2), (3, 4), (5, 6)] ); } #[test] fn keys() { let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')]; let map: OrderMap<_, _> = vec.into_par_iter().collect(); let keys: Vec<_> = map.par_keys().copied().collect(); assert_eq!(keys.len(), 3); assert!(keys.contains(&1)); assert!(keys.contains(&2)); assert!(keys.contains(&3)); } #[test] fn values() { let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')]; let map: OrderMap<_, _> = vec.into_par_iter().collect(); let values: Vec<_> = map.par_values().copied().collect(); assert_eq!(values.len(), 3); assert!(values.contains(&'a')); assert!(values.contains(&'b')); assert!(values.contains(&'c')); } #[test] fn values_mut() { let vec = vec![(1, 1), (2, 2), (3, 3)]; let mut map: OrderMap<_, _> = vec.into_par_iter().collect(); map.par_values_mut().for_each(|value| *value *= 2); let values: Vec<_> = map.par_values().copied().collect(); assert_eq!(values.len(), 3); assert!(values.contains(&2)); assert!(values.contains(&4)); assert!(values.contains(&6)); } } ordermap-1.1.0/src/map/serde_seq.rs000064400000000000000000000042061046102023000153220ustar 00000000000000//! Functions to serialize and deserialize an [`OrderMap`] as an ordered sequence. //! //! The default `serde` implementation serializes `OrderMap` as a normal map, //! but there is no guarantee that serialization formats will preserve the order //! of the key-value pairs. This module serializes `OrderMap` as a sequence of //! `(key, value)` elements instead, in order. //! //! This module may be used in a field attribute for derived implementations: //! //! ``` //! # use ordermap::OrderMap; //! # use serde::{Deserialize, Serialize}; //! #[derive(Deserialize, Serialize)] //! struct Data { //! #[serde(with = "ordermap::map::serde_seq")] //! map: OrderMap, //! // ... //! } //! ``` use crate::OrderMap; use core::hash::{BuildHasher, Hash}; use indexmap::map::serde_seq as ix; use serde_core::de::{Deserialize, Deserializer}; use serde_core::ser::{Serialize, Serializer}; /// Serializes an [`OrderMap`] as an ordered sequence. /// /// This function may be used in a field attribute for deriving [`Serialize`]: /// /// ``` /// # use ordermap::OrderMap; /// # use serde::Serialize; /// #[derive(Serialize)] /// struct Data { /// #[serde(serialize_with = "ordermap::map::serde_seq::serialize")] /// map: OrderMap, /// // ... /// } /// ``` pub fn serialize(map: &OrderMap, serializer: T) -> Result where K: Serialize, V: Serialize, T: Serializer, { ix::serialize(&map.inner, serializer) } /// Deserializes an [`OrderMap`] from an ordered sequence. /// /// This function may be used in a field attribute for deriving [`Deserialize`]: /// /// ``` /// # use ordermap::OrderMap; /// # use serde::Deserialize; /// #[derive(Deserialize)] /// struct Data { /// #[serde(deserialize_with = "ordermap::map::serde_seq::deserialize")] /// map: OrderMap, /// // ... /// } /// ``` pub fn deserialize<'de, D, K, V, S>(deserializer: D) -> Result, D::Error> where D: Deserializer<'de>, K: Deserialize<'de> + Eq + Hash, V: Deserialize<'de>, S: Default + BuildHasher, { Ok(OrderMap { inner: ix::deserialize(deserializer)?, }) } ordermap-1.1.0/src/map/slice.rs000064400000000000000000000177031046102023000144550ustar 00000000000000use super::OrderMap; use core::ops::{self, Bound, Index, IndexMut}; use indexmap::map::Slice; // We can't have `impl> Index` because that conflicts // both upstream with `Index` and downstream with `Index<&Q>`. // Instead, we repeat the implementations for all the core range types. macro_rules! impl_index { ($($range:ty),*) => {$( impl Index<$range> for OrderMap { type Output = Slice; fn index(&self, range: $range) -> &Self::Output { &self.inner[range] } } impl IndexMut<$range> for OrderMap { fn index_mut(&mut self, range: $range) -> &mut Self::Output { &mut self.inner[range] } } )*} } impl_index!( ops::Range, ops::RangeFrom, ops::RangeFull, ops::RangeInclusive, ops::RangeTo, ops::RangeToInclusive, (Bound, Bound) ); #[cfg(test)] mod tests { use super::*; use alloc::vec::Vec; #[test] fn slice_index() { fn check( vec_slice: &[(i32, i32)], map_slice: &Slice, sub_slice: &Slice, ) { assert_eq!(map_slice as *const _, sub_slice as *const _); itertools::assert_equal( vec_slice.iter().copied(), map_slice.iter().map(|(&k, &v)| (k, v)), ); itertools::assert_equal(vec_slice.iter().map(|(k, _)| k), map_slice.keys()); itertools::assert_equal(vec_slice.iter().map(|(_, v)| v), map_slice.values()); } let vec: Vec<(i32, i32)> = (0..10).map(|i| (i, i * i)).collect(); let map: OrderMap = vec.iter().cloned().collect(); let slice = map.as_slice(); // RangeFull check(&vec[..], &map[..], &slice[..]); for i in 0usize..10 { // Index assert_eq!(vec[i].1, map[i]); assert_eq!(vec[i].1, slice[i]); assert_eq!(map[&(i as i32)], map[i]); assert_eq!(map[&(i as i32)], slice[i]); // RangeFrom check(&vec[i..], &map[i..], &slice[i..]); // RangeTo check(&vec[..i], &map[..i], &slice[..i]); // RangeToInclusive check(&vec[..=i], &map[..=i], &slice[..=i]); // (Bound, Bound) let bounds = (Bound::Excluded(i), Bound::Unbounded); check(&vec[i + 1..], &map[bounds], &slice[bounds]); for j in i..=10 { // Range check(&vec[i..j], &map[i..j], &slice[i..j]); } for j in i..10 { // RangeInclusive check(&vec[i..=j], &map[i..=j], &slice[i..=j]); } } } #[test] fn slice_index_mut() { fn check_mut( vec_slice: &[(i32, i32)], map_slice: &mut Slice, sub_slice: &mut Slice, ) { assert_eq!(map_slice, sub_slice); itertools::assert_equal( vec_slice.iter().copied(), map_slice.iter_mut().map(|(&k, &mut v)| (k, v)), ); itertools::assert_equal( vec_slice.iter().map(|&(_, v)| v), map_slice.values_mut().map(|&mut v| v), ); } let vec: Vec<(i32, i32)> = (0..10).map(|i| (i, i * i)).collect(); let mut map: OrderMap = vec.iter().cloned().collect(); let mut map2 = map.clone(); let slice = map2.as_mut_slice(); // RangeFull check_mut(&vec[..], &mut map[..], &mut slice[..]); for i in 0usize..10 { // IndexMut assert_eq!(&mut map[i], &mut slice[i]); // RangeFrom check_mut(&vec[i..], &mut map[i..], &mut slice[i..]); // RangeTo check_mut(&vec[..i], &mut map[..i], &mut slice[..i]); // RangeToInclusive check_mut(&vec[..=i], &mut map[..=i], &mut slice[..=i]); // (Bound, Bound) let bounds = (Bound::Excluded(i), Bound::Unbounded); check_mut(&vec[i + 1..], &mut map[bounds], &mut slice[bounds]); for j in i..=10 { // Range check_mut(&vec[i..j], &mut map[i..j], &mut slice[i..j]); } for j in i..10 { // RangeInclusive check_mut(&vec[i..=j], &mut map[i..=j], &mut slice[i..=j]); } } } #[test] fn slice_new() { let slice: &Slice = Slice::new(); assert!(slice.is_empty()); assert_eq!(slice.len(), 0); } #[test] fn slice_new_mut() { let slice: &mut Slice = Slice::new_mut(); assert!(slice.is_empty()); assert_eq!(slice.len(), 0); } #[test] fn slice_get_index_mut() { let mut map: OrderMap = (0..10).map(|i| (i, i * i)).collect(); let slice: &mut Slice = map.as_mut_slice(); { let (key, value) = slice.get_index_mut(0).unwrap(); assert_eq!(*key, 0); assert_eq!(*value, 0); *value = 11; } assert_eq!(slice[0], 11); { let result = slice.get_index_mut(11); assert!(result.is_none()); } } #[test] fn slice_split_first() { let slice: &mut Slice = Slice::new_mut(); let result = slice.split_first(); assert!(result.is_none()); let mut map: OrderMap = (0..10).map(|i| (i, i * i)).collect(); let slice: &mut Slice = map.as_mut_slice(); { let (first, rest) = slice.split_first().unwrap(); assert_eq!(first, (&0, &0)); assert_eq!(rest.len(), 9); } assert_eq!(slice.len(), 10); } #[test] fn slice_split_first_mut() { let slice: &mut Slice = Slice::new_mut(); let result = slice.split_first_mut(); assert!(result.is_none()); let mut map: OrderMap = (0..10).map(|i| (i, i * i)).collect(); let slice: &mut Slice = map.as_mut_slice(); { let (first, rest) = slice.split_first_mut().unwrap(); assert_eq!(first, (&0, &mut 0)); assert_eq!(rest.len(), 9); *first.1 = 11; } assert_eq!(slice.len(), 10); assert_eq!(slice[0], 11); } #[test] fn slice_split_last() { let slice: &mut Slice = Slice::new_mut(); let result = slice.split_last(); assert!(result.is_none()); let mut map: OrderMap = (0..10).map(|i| (i, i * i)).collect(); let slice: &mut Slice = map.as_mut_slice(); { let (last, rest) = slice.split_last().unwrap(); assert_eq!(last, (&9, &81)); assert_eq!(rest.len(), 9); } assert_eq!(slice.len(), 10); } #[test] fn slice_split_last_mut() { let slice: &mut Slice = Slice::new_mut(); let result = slice.split_last_mut(); assert!(result.is_none()); let mut map: OrderMap = (0..10).map(|i| (i, i * i)).collect(); let slice: &mut Slice = map.as_mut_slice(); { let (last, rest) = slice.split_last_mut().unwrap(); assert_eq!(last, (&9, &mut 81)); assert_eq!(rest.len(), 9); *last.1 = 100; } assert_eq!(slice.len(), 10); assert_eq!(slice[slice.len() - 1], 100); } #[test] fn slice_get_range() { let mut map: OrderMap = (0..10).map(|i| (i, i * i)).collect(); let slice: &mut Slice = map.as_mut_slice(); let subslice = slice.get_range(3..6).unwrap(); assert_eq!(subslice.len(), 3); assert_eq!(subslice, &[(3, 9), (4, 16), (5, 25)]); } } ordermap-1.1.0/src/map/tests.rs000064400000000000000000001075541046102023000145240ustar 00000000000000use super::*; use std::string::String; use std::vec::Vec; #[test] fn it_works() { let mut map = OrderMap::new(); assert_eq!(map.is_empty(), true); map.insert(1, ()); map.insert(1, ()); assert_eq!(map.len(), 1); assert!(map.get(&1).is_some()); assert_eq!(map.is_empty(), false); } #[test] fn new() { let map = OrderMap::::new(); println!("{:?}", map); assert_eq!(map.capacity(), 0); assert_eq!(map.len(), 0); assert_eq!(map.is_empty(), true); } #[test] fn insert() { let insert = [0, 4, 2, 12, 8, 7, 11, 5]; let not_present = [1, 3, 6, 9, 10]; let mut map = OrderMap::with_capacity(insert.len()); for (i, &elt) in insert.iter().enumerate() { assert_eq!(map.len(), i); map.insert(elt, elt); assert_eq!(map.len(), i + 1); assert_eq!(map.get(&elt), Some(&elt)); assert_eq!(map[&elt], elt); } println!("{:?}", map); for &elt in ¬_present { assert!(map.get(&elt).is_none()); } } #[test] fn insert_full() { let insert = vec![9, 2, 7, 1, 4, 6, 13]; let present = vec![1, 6, 2]; let mut map = OrderMap::with_capacity(insert.len()); for (i, &elt) in insert.iter().enumerate() { assert_eq!(map.len(), i); let (index, existing) = map.insert_full(elt, elt); assert_eq!(existing, None); assert_eq!(Some(index), map.get_full(&elt).map(|x| x.0)); assert_eq!(map.len(), i + 1); } let len = map.len(); for &elt in &present { let (index, existing) = map.insert_full(elt, elt); assert_eq!(existing, Some(elt)); assert_eq!(Some(index), map.get_full(&elt).map(|x| x.0)); assert_eq!(map.len(), len); } } #[test] fn insert_2() { let mut map = OrderMap::with_capacity(16); let mut keys = vec![]; keys.extend(0..16); keys.extend(if cfg!(miri) { 32..64 } else { 128..267 }); for &i in &keys { let old_map = map.clone(); map.insert(i, ()); for key in old_map.keys() { if map.get(key).is_none() { println!("old_map: {:?}", old_map); println!("map: {:?}", map); panic!("did not find {} in map", key); } } } for &i in &keys { assert!(map.get(&i).is_some(), "did not find {}", i); } } #[test] fn insert_order() { let insert = [0, 4, 2, 12, 8, 7, 11, 5, 3, 17, 19, 22, 23]; let mut map = OrderMap::new(); for &elt in &insert { map.insert(elt, ()); } assert_eq!(map.keys().count(), map.len()); assert_eq!(map.keys().count(), insert.len()); for (a, b) in insert.iter().zip(map.keys()) { assert_eq!(a, b); } for (i, k) in (0..insert.len()).zip(map.keys()) { assert_eq!(map.get_index(i).unwrap().0, k); } } #[test] fn shift_insert() { let insert = [0, 4, 2, 12, 8, 7, 11, 5, 3, 17, 19, 22, 23]; let mut map = OrderMap::new(); for &elt in &insert { map.shift_insert(0, elt, ()); } assert_eq!(map.keys().count(), map.len()); assert_eq!(map.keys().count(), insert.len()); for (a, b) in insert.iter().rev().zip(map.keys()) { assert_eq!(a, b); } for (i, k) in (0..insert.len()).zip(map.keys()) { assert_eq!(map.get_index(i).unwrap().0, k); } // "insert" that moves an existing entry map.shift_insert(0, insert[0], ()); assert_eq!(map.keys().count(), insert.len()); assert_eq!(insert[0], map.keys()[0]); for (a, b) in insert[1..].iter().rev().zip(map.keys().skip(1)) { assert_eq!(a, b); } } #[test] fn insert_sorted_bad() { let mut map = OrderMap::new(); map.insert(10, ()); for i in 0..10 { map.insert(i, ()); } // The binary search will want to insert this at the end (index == len()), // but that's only possible for *new* inserts. It should still be handled // without panicking though, and in this case it's simple enough that we // know the exact result. (But don't read this as an API guarantee!) assert_eq!(map.first(), Some((&10, &()))); map.insert_sorted(10, ()); assert_eq!(map.last(), Some((&10, &()))); assert!(map.keys().copied().eq(0..=10)); // Other out-of-order entries can also "insert" to a binary-searched // position, moving in either direction. map.move_index(5, 0); map.move_index(6, 10); assert_eq!(map.first(), Some((&5, &()))); assert_eq!(map.last(), Some((&6, &()))); map.insert_sorted(5, ()); // moves back up map.insert_sorted(6, ()); // moves back down assert!(map.keys().copied().eq(0..=10)); } #[test] fn grow() { let insert = [0, 4, 2, 12, 8, 7, 11]; let not_present = [1, 3, 6, 9, 10]; let mut map = OrderMap::with_capacity(insert.len()); for (i, &elt) in insert.iter().enumerate() { assert_eq!(map.len(), i); map.insert(elt, elt); assert_eq!(map.len(), i + 1); assert_eq!(map.get(&elt), Some(&elt)); assert_eq!(map[&elt], elt); } println!("{:?}", map); for &elt in &insert { map.insert(elt * 10, elt); } for &elt in &insert { map.insert(elt * 100, elt); } for (i, &elt) in insert.iter().cycle().enumerate().take(100) { map.insert(elt * 100 + i as i32, elt); } println!("{:?}", map); for &elt in ¬_present { assert!(map.get(&elt).is_none()); } } #[test] fn reserve() { let mut map = OrderMap::::new(); assert_eq!(map.capacity(), 0); map.reserve(100); let capacity = map.capacity(); assert!(capacity >= 100); for i in 0..capacity { assert_eq!(map.len(), i); map.insert(i, i * i); assert_eq!(map.len(), i + 1); assert_eq!(map.capacity(), capacity); assert_eq!(map.get(&i), Some(&(i * i))); } map.insert(capacity, std::usize::MAX); assert_eq!(map.len(), capacity + 1); assert!(map.capacity() > capacity); assert_eq!(map.get(&capacity), Some(&std::usize::MAX)); } #[test] fn try_reserve() { let mut map = OrderMap::::new(); assert_eq!(map.capacity(), 0); assert_eq!(map.try_reserve(100), Ok(())); assert!(map.capacity() >= 100); assert!(map.try_reserve(usize::MAX).is_err()); } #[test] fn shrink_to_fit() { let mut map = OrderMap::::new(); assert_eq!(map.capacity(), 0); for i in 0..100 { assert_eq!(map.len(), i); map.insert(i, i * i); assert_eq!(map.len(), i + 1); assert!(map.capacity() >= i + 1); assert_eq!(map.get(&i), Some(&(i * i))); map.shrink_to_fit(); assert_eq!(map.len(), i + 1); assert_eq!(map.capacity(), i + 1); assert_eq!(map.get(&i), Some(&(i * i))); } } #[test] fn remove() { let insert = [0, 4, 2, 12, 8, 7, 11, 5, 3, 17, 19, 22, 23]; let mut map = OrderMap::new(); for &elt in &insert { map.insert(elt, elt); } assert_eq!(map.keys().count(), map.len()); assert_eq!(map.keys().count(), insert.len()); for (a, b) in insert.iter().zip(map.keys()) { assert_eq!(a, b); } let remove_fail = [99, 77]; let remove = [4, 12, 8, 7]; for &key in &remove_fail { assert!(map.swap_remove_full(&key).is_none()); } println!("{:?}", map); for &key in &remove { //println!("{:?}", map); let index = map.get_full(&key).unwrap().0; assert_eq!(map.swap_remove_full(&key), Some((index, key, key))); } println!("{:?}", map); for key in &insert { assert_eq!(map.get(key).is_some(), !remove.contains(key)); } assert_eq!(map.len(), insert.len() - remove.len()); assert_eq!(map.keys().count(), insert.len() - remove.len()); } #[test] fn remove_to_empty() { let mut map = ordermap! { 0 => 0, 4 => 4, 5 => 5 }; map.swap_remove(&5).unwrap(); map.swap_remove(&4).unwrap(); map.swap_remove(&0).unwrap(); assert!(map.is_empty()); } #[test] fn swap_remove_index() { let insert = [0, 4, 2, 12, 8, 7, 11, 5, 3, 17, 19, 22, 23]; let mut map = OrderMap::new(); for &elt in &insert { map.insert(elt, elt * 2); } let mut vector = insert.to_vec(); let remove_sequence = &[3, 3, 10, 4, 5, 4, 3, 0, 1]; // check that the same swap remove sequence on vec and map // have the same result. for &rm in remove_sequence { let out_vec = vector.swap_remove(rm); let (out_map, _) = map.swap_remove_index(rm).unwrap(); assert_eq!(out_vec, out_map); } assert_eq!(vector.len(), map.len()); for (a, b) in vector.iter().zip(map.keys()) { assert_eq!(a, b); } } #[test] fn partial_eq_and_eq() { let mut map_a = OrderMap::new(); map_a.insert(1, "1"); map_a.insert(2, "2"); let mut map_b = map_a.clone(); assert_eq!(map_a, map_b); map_b.swap_remove(&1); assert_ne!(map_a, map_b); } #[test] fn extend() { let mut map = OrderMap::new(); map.extend(vec![(&1, &2), (&3, &4)]); map.extend(vec![(5, 6)]); assert_eq!( map.into_iter().collect::>(), vec![(1, 2), (3, 4), (5, 6)] ); } #[test] fn entry() { let mut map = OrderMap::new(); map.insert(1, "1"); map.insert(2, "2"); { let e = map.entry(3); assert_eq!(e.index(), 2); let e = e.or_insert("3"); assert_eq!(e, &"3"); } let e = map.entry(2); assert_eq!(e.index(), 1); assert_eq!(e.key(), &2); match e { Entry::Occupied(ref e) => assert_eq!(e.get(), &"2"), Entry::Vacant(_) => panic!(), } assert_eq!(e.or_insert("4"), &"2"); } #[test] fn entry_and_modify() { let mut map = OrderMap::new(); map.insert(1, "1"); map.entry(1).and_modify(|x| *x = "2"); assert_eq!(Some(&"2"), map.get(&1)); map.entry(2).and_modify(|x| *x = "doesn't exist"); assert_eq!(None, map.get(&2)); } #[test] fn entry_or_default() { let mut map = OrderMap::new(); #[derive(Debug, PartialEq)] enum TestEnum { DefaultValue, NonDefaultValue, } impl Default for TestEnum { fn default() -> Self { TestEnum::DefaultValue } } map.insert(1, TestEnum::NonDefaultValue); assert_eq!(&mut TestEnum::NonDefaultValue, map.entry(1).or_default()); assert_eq!(&mut TestEnum::DefaultValue, map.entry(2).or_default()); } #[test] fn occupied_entry_key() { // These keys match hash and equality, but their addresses are distinct. let (k1, k2) = (&mut 1, &mut 1); let k1_ptr = k1 as *const i32; let k2_ptr = k2 as *const i32; assert_ne!(k1_ptr, k2_ptr); let mut map = OrderMap::new(); map.insert(k1, "value"); match map.entry(k2) { Entry::Occupied(ref e) => { // `OccupiedEntry::key` should reference the key in the map, // not the key that was used to find the entry. let ptr = *e.key() as *const i32; assert_eq!(ptr, k1_ptr); assert_ne!(ptr, k2_ptr); } Entry::Vacant(_) => panic!(), } } #[test] fn get_index_entry() { let mut map = OrderMap::new(); assert!(map.get_index_entry(0).is_none()); assert!(map.first_entry().is_none()); assert!(map.last_entry().is_none()); map.insert(0, "0"); map.insert(1, "1"); map.insert(2, "2"); map.insert(3, "3"); assert!(map.get_index_entry(4).is_none()); { let e = map.get_index_entry(1).unwrap(); assert_eq!(*e.key(), 1); assert_eq!(*e.get(), "1"); assert_eq!(e.swap_remove(), "1"); } { let mut e = map.get_index_entry(1).unwrap(); assert_eq!(*e.key(), 3); assert_eq!(*e.get(), "3"); assert_eq!(e.insert("4"), "3"); } assert_eq!(*map.get(&3).unwrap(), "4"); { let e = map.first_entry().unwrap(); assert_eq!(*e.key(), 0); assert_eq!(*e.get(), "0"); } { let e = map.last_entry().unwrap(); assert_eq!(*e.key(), 2); assert_eq!(*e.get(), "2"); } } #[test] fn from_entries() { let mut map = OrderMap::from([(1, "1"), (2, "2"), (3, "3")]); { let e = match map.entry(1) { Entry::Occupied(e) => IndexedEntry::from(e), Entry::Vacant(_) => panic!(), }; assert_eq!(e.index(), 0); assert_eq!(*e.key(), 1); assert_eq!(*e.get(), "1"); } { let e = match map.get_index_entry(1) { Some(e) => OccupiedEntry::from(e), None => panic!(), }; assert_eq!(e.index(), 1); assert_eq!(*e.key(), 2); assert_eq!(*e.get(), "2"); } } #[test] fn keys() { let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')]; let map: OrderMap<_, _> = vec.into_iter().collect(); let keys: Vec<_> = map.keys().copied().collect(); assert_eq!(keys.len(), 3); assert!(keys.contains(&1)); assert!(keys.contains(&2)); assert!(keys.contains(&3)); } #[test] fn into_keys() { let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')]; let map: OrderMap<_, _> = vec.into_iter().collect(); let keys: Vec = map.into_keys().collect(); assert_eq!(keys.len(), 3); assert!(keys.contains(&1)); assert!(keys.contains(&2)); assert!(keys.contains(&3)); } #[test] fn values() { let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')]; let map: OrderMap<_, _> = vec.into_iter().collect(); let values: Vec<_> = map.values().copied().collect(); assert_eq!(values.len(), 3); assert!(values.contains(&'a')); assert!(values.contains(&'b')); assert!(values.contains(&'c')); } #[test] fn values_mut() { let vec = vec![(1, 1), (2, 2), (3, 3)]; let mut map: OrderMap<_, _> = vec.into_iter().collect(); for value in map.values_mut() { *value *= 2 } let values: Vec<_> = map.values().copied().collect(); assert_eq!(values.len(), 3); assert!(values.contains(&2)); assert!(values.contains(&4)); assert!(values.contains(&6)); } #[test] fn into_values() { let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')]; let map: OrderMap<_, _> = vec.into_iter().collect(); let values: Vec = map.into_values().collect(); assert_eq!(values.len(), 3); assert!(values.contains(&'a')); assert!(values.contains(&'b')); assert!(values.contains(&'c')); } #[test] fn drain_range() { // Test the various heuristics of `erase_indices` for range in [ 0..0, // nothing erased 10..90, // reinsert the few kept (..10 and 90..) 80..90, // update the few to adjust (80..) 20..30, // sweep everything ] { let mut vec = Vec::from_iter(0..100); let mut map: OrderMap = (0..100).map(|i| (i, ())).collect(); drop(vec.drain(range.clone())); drop(map.drain(range)); assert!(vec.iter().eq(map.keys())); for (i, x) in vec.iter().enumerate() { assert_eq!(map.get_index_of(x), Some(i)); } } } #[test] #[cfg(feature = "std")] fn from_array() { let map = OrderMap::from([(1, 2), (3, 4)]); let mut expected = OrderMap::new(); expected.insert(1, 2); expected.insert(3, 4); assert_eq!(map, expected) } #[test] fn iter_default() { struct K; struct V; fn assert_default() where T: Default + Iterator, { assert!(T::default().next().is_none()); } assert_default::>(); assert_default::>(); assert_default::>(); assert_default::>(); assert_default::>(); assert_default::>(); assert_default::>(); assert_default::>(); assert_default::>(); } #[test] fn get_index_mut2() { let mut map: OrderMap = OrderMap::new(); map.insert(1, 2); map.insert(3, 4); map.insert(5, 6); { let (key, value) = map.get_index_mut2(0).unwrap(); assert_eq!(*key, 1); assert_eq!(*value, 2); *value = 7; } assert_eq!(map[0], 7); { let (key, _) = map.get_index_mut2(0).unwrap(); *key = 8; } assert_eq!(map.get_index(0).unwrap().0, &8); } #[test] fn shift_shift_remove_index() { let mut map: OrderMap = OrderMap::new(); map.insert(1, 2); map.insert(3, 4); map.insert(5, 6); map.insert(7, 8); map.insert(9, 10); let result = map.remove_index(1); assert_eq!(result, Some((3, 4))); assert_eq!(map.len(), 4); assert_eq!(map.as_slice(), &[(1, 2), (5, 6), (7, 8), (9, 10)]); let result = map.remove_index(1); assert_eq!(result, Some((5, 6))); assert_eq!(map.len(), 3); assert_eq!(map.as_slice(), &[(1, 2), (7, 8), (9, 10)]); let result = map.remove_index(2); assert_eq!(result, Some((9, 10))); assert_eq!(map.len(), 2); assert_eq!(map.as_slice(), &[(1, 2), (7, 8)]); let result = map.remove_index(2); assert_eq!(result, None); assert_eq!(map.len(), 2); assert_eq!(map.as_slice(), &[(1, 2), (7, 8)]); } #[test] fn shift_remove_entry() { let mut map: OrderMap = OrderMap::new(); map.insert(1, 2); map.insert(3, 4); map.insert(5, 6); map.insert(7, 8); map.insert(9, 10); let result = map.remove_entry(&3); assert_eq!(result, Some((3, 4))); assert_eq!(map.len(), 4); assert_eq!(map.as_slice(), &[(1, 2), (5, 6), (7, 8), (9, 10)]); let result = map.remove_entry(&9); assert_eq!(result, Some((9, 10))); assert_eq!(map.len(), 3); assert_eq!(map.as_slice(), &[(1, 2), (5, 6), (7, 8)]); let result = map.remove_entry(&9); assert_eq!(result, None); assert_eq!(map.len(), 3); assert_eq!(map.as_slice(), &[(1, 2), (5, 6), (7, 8)]); } #[test] fn shift_remove_full() { let mut map: OrderMap = OrderMap::new(); map.insert(1, 2); map.insert(3, 4); map.insert(5, 6); map.insert(7, 8); map.insert(9, 10); let result = map.remove_full(&3); assert_eq!(result, Some((1, 3, 4))); assert_eq!(map.len(), 4); assert_eq!(map.as_slice(), &[(1, 2), (5, 6), (7, 8), (9, 10)]); let result = map.remove_full(&9); assert_eq!(result, Some((3, 9, 10))); assert_eq!(map.len(), 3); assert_eq!(map.as_slice(), &[(1, 2), (5, 6), (7, 8)]); let result = map.remove_full(&9); assert_eq!(result, None); assert_eq!(map.len(), 3); assert_eq!(map.as_slice(), &[(1, 2), (5, 6), (7, 8)]); } #[test] fn sorted_unstable_by() { let mut map: OrderMap = OrderMap::new(); map.extend(vec![(1, 10), (2, 20), (3, 30), (4, 40), (5, 50)]); let sorted = map.sorted_unstable_by(|_a, b, _c, d| d.cmp(&b)); assert_eq!( sorted.as_slice(), &[(5, 50), (4, 40), (3, 30), (2, 20), (1, 10)] ); } #[test] fn into_boxed_slice() { let mut map: OrderMap = OrderMap::new(); for i in 0..5 { map.insert(i, i * 10); } let boxed_slice: Box> = map.into_boxed_slice(); assert_eq!(boxed_slice.len(), 5); assert_eq!( boxed_slice.as_ref(), &[(0, 0), (1, 10), (2, 20), (3, 30), (4, 40)] ); } #[test] fn last_mut() { let mut map: OrderMap<&str, i32> = OrderMap::new(); let last_entry = map.last_mut(); assert_eq!(last_entry, None); map.insert("key1", 1); map.insert("key2", 2); map.insert("key3", 3); let last_entry = map.last_mut(); assert_eq!(last_entry, Some((&"key3", &mut 3))); *last_entry.unwrap().1 = 4; assert_eq!(map.get("key3"), Some(&4)); } #[test] #[should_panic = "index out of bounds"] fn insert_before_oob() { let mut map: OrderMap = OrderMap::new(); let _ = map.insert_before(0, 'a', ()); let _ = map.insert_before(1, 'b', ()); map.insert_before(3, 'd', ()); } #[test] fn clear() { let mut map: OrderMap = OrderMap::new(); map.extend(vec![(1, 10), (2, 20), (3, 30), (4, 40), (5, 50)]); map.clear(); assert_eq!(map.len(), 0); } #[test] fn get_range() { let mut index_map: OrderMap = OrderMap::new(); index_map.insert(1, 10); index_map.insert(2, 20); index_map.insert(3, 30); index_map.insert(4, 40); index_map.insert(5, 50); let result = index_map.get_range(2..2); assert!(result.unwrap().is_empty()); let result = index_map.get_range(4..2); assert!(result.is_none()); let result = index_map.get_range(2..4); let slice: &Slice = result.unwrap(); assert_eq!(slice.len(), 2); assert_eq!(slice, &[(3, 30), (4, 40)]); } #[test] fn get_range_mut() { let mut index_map: OrderMap = OrderMap::new(); index_map.insert(1, 10); index_map.insert(2, 20); index_map.insert(3, 30); index_map.insert(4, 40); index_map.insert(5, 50); let result = index_map.get_range_mut(2..2); assert!(result.unwrap().is_empty()); let result = index_map.get_range_mut(4..2); assert!(result.is_none()); let result = index_map.get_range_mut(2..4); let slice: &mut Slice = result.unwrap(); assert_eq!(slice.len(), 2); assert_eq!(slice, &mut [(3, 30), (4, 40)]); for i in 0..slice.len() { slice[i] += 1; } assert_eq!(slice, &mut [(3, 31), (4, 41)]); } #[test] #[should_panic = "index out of bounds"] fn shift_insert_oob() { let mut map: OrderMap = OrderMap::new(); map.shift_insert(0, 1, 10); map.shift_insert(1, 2, 20); map.shift_insert(2, 3, 30); map.shift_insert(5, 4, 40); } #[test] fn test_binary_search_by() { // adapted from std's test for binary_search let b: OrderMap<_, i32> = [] .into_iter() .enumerate() .map(|(i, x)| (i + 100, x)) .collect(); assert_eq!(b.binary_search_by(|_, x| x.cmp(&5)), Err(0)); let b: OrderMap<_, i32> = [4] .into_iter() .enumerate() .map(|(i, x)| (i + 100, x)) .collect(); assert_eq!(b.binary_search_by(|_, x| x.cmp(&3)), Err(0)); assert_eq!(b.binary_search_by(|_, x| x.cmp(&4)), Ok(0)); assert_eq!(b.binary_search_by(|_, x| x.cmp(&5)), Err(1)); let b: OrderMap<_, i32> = [1, 2, 4, 6, 8, 9] .into_iter() .enumerate() .map(|(i, x)| (i + 100, x)) .collect(); assert_eq!(b.binary_search_by(|_, x| x.cmp(&5)), Err(3)); assert_eq!(b.binary_search_by(|_, x| x.cmp(&6)), Ok(3)); assert_eq!(b.binary_search_by(|_, x| x.cmp(&7)), Err(4)); assert_eq!(b.binary_search_by(|_, x| x.cmp(&8)), Ok(4)); let b: OrderMap<_, i32> = [1, 2, 4, 5, 6, 8] .into_iter() .enumerate() .map(|(i, x)| (i + 100, x)) .collect(); assert_eq!(b.binary_search_by(|_, x| x.cmp(&9)), Err(6)); let b: OrderMap<_, i32> = [1, 2, 4, 6, 7, 8, 9] .into_iter() .enumerate() .map(|(i, x)| (i + 100, x)) .collect(); assert_eq!(b.binary_search_by(|_, x| x.cmp(&6)), Ok(3)); assert_eq!(b.binary_search_by(|_, x| x.cmp(&5)), Err(3)); assert_eq!(b.binary_search_by(|_, x| x.cmp(&8)), Ok(5)); let b: OrderMap<_, i32> = [1, 2, 4, 5, 6, 8, 9] .into_iter() .enumerate() .map(|(i, x)| (i + 100, x)) .collect(); assert_eq!(b.binary_search_by(|_, x| x.cmp(&7)), Err(5)); assert_eq!(b.binary_search_by(|_, x| x.cmp(&0)), Err(0)); let b: OrderMap<_, i32> = [1, 3, 3, 3, 7] .into_iter() .enumerate() .map(|(i, x)| (i + 100, x)) .collect(); assert_eq!(b.binary_search_by(|_, x| x.cmp(&0)), Err(0)); assert_eq!(b.binary_search_by(|_, x| x.cmp(&1)), Ok(0)); assert_eq!(b.binary_search_by(|_, x| x.cmp(&2)), Err(1)); assert!(match b.binary_search_by(|_, x| x.cmp(&3)) { Ok(1..=3) => true, _ => false, }); assert!(match b.binary_search_by(|_, x| x.cmp(&3)) { Ok(1..=3) => true, _ => false, }); assert_eq!(b.binary_search_by(|_, x| x.cmp(&4)), Err(4)); assert_eq!(b.binary_search_by(|_, x| x.cmp(&5)), Err(4)); assert_eq!(b.binary_search_by(|_, x| x.cmp(&6)), Err(4)); assert_eq!(b.binary_search_by(|_, x| x.cmp(&7)), Ok(4)); assert_eq!(b.binary_search_by(|_, x| x.cmp(&8)), Err(5)); } #[test] fn test_binary_search_by_key() { // adapted from std's test for binary_search let b: OrderMap<_, i32> = [] .into_iter() .enumerate() .map(|(i, x)| (i + 100, x)) .collect(); assert_eq!(b.binary_search_by_key(&5, |_, &x| x), Err(0)); let b: OrderMap<_, i32> = [4] .into_iter() .enumerate() .map(|(i, x)| (i + 100, x)) .collect(); assert_eq!(b.binary_search_by_key(&3, |_, &x| x), Err(0)); assert_eq!(b.binary_search_by_key(&4, |_, &x| x), Ok(0)); assert_eq!(b.binary_search_by_key(&5, |_, &x| x), Err(1)); let b: OrderMap<_, i32> = [1, 2, 4, 6, 8, 9] .into_iter() .enumerate() .map(|(i, x)| (i + 100, x)) .collect(); assert_eq!(b.binary_search_by_key(&5, |_, &x| x), Err(3)); assert_eq!(b.binary_search_by_key(&6, |_, &x| x), Ok(3)); assert_eq!(b.binary_search_by_key(&7, |_, &x| x), Err(4)); assert_eq!(b.binary_search_by_key(&8, |_, &x| x), Ok(4)); let b: OrderMap<_, i32> = [1, 2, 4, 5, 6, 8] .into_iter() .enumerate() .map(|(i, x)| (i + 100, x)) .collect(); assert_eq!(b.binary_search_by_key(&9, |_, &x| x), Err(6)); let b: OrderMap<_, i32> = [1, 2, 4, 6, 7, 8, 9] .into_iter() .enumerate() .map(|(i, x)| (i + 100, x)) .collect(); assert_eq!(b.binary_search_by_key(&6, |_, &x| x), Ok(3)); assert_eq!(b.binary_search_by_key(&5, |_, &x| x), Err(3)); assert_eq!(b.binary_search_by_key(&8, |_, &x| x), Ok(5)); let b: OrderMap<_, i32> = [1, 2, 4, 5, 6, 8, 9] .into_iter() .enumerate() .map(|(i, x)| (i + 100, x)) .collect(); assert_eq!(b.binary_search_by_key(&7, |_, &x| x), Err(5)); assert_eq!(b.binary_search_by_key(&0, |_, &x| x), Err(0)); let b: OrderMap<_, i32> = [1, 3, 3, 3, 7] .into_iter() .enumerate() .map(|(i, x)| (i + 100, x)) .collect(); assert_eq!(b.binary_search_by_key(&0, |_, &x| x), Err(0)); assert_eq!(b.binary_search_by_key(&1, |_, &x| x), Ok(0)); assert_eq!(b.binary_search_by_key(&2, |_, &x| x), Err(1)); assert!(match b.binary_search_by_key(&3, |_, &x| x) { Ok(1..=3) => true, _ => false, }); assert!(match b.binary_search_by_key(&3, |_, &x| x) { Ok(1..=3) => true, _ => false, }); assert_eq!(b.binary_search_by_key(&4, |_, &x| x), Err(4)); assert_eq!(b.binary_search_by_key(&5, |_, &x| x), Err(4)); assert_eq!(b.binary_search_by_key(&6, |_, &x| x), Err(4)); assert_eq!(b.binary_search_by_key(&7, |_, &x| x), Ok(4)); assert_eq!(b.binary_search_by_key(&8, |_, &x| x), Err(5)); } #[test] fn test_partition_point() { // adapted from std's test for partition_point let b: OrderMap<_, i32> = [] .into_iter() .enumerate() .map(|(i, x)| (i + 100, x)) .collect(); assert_eq!(b.partition_point(|_, &x| x < 5), 0); let b: OrderMap<_, i32> = [4] .into_iter() .enumerate() .map(|(i, x)| (i + 100, x)) .collect(); assert_eq!(b.partition_point(|_, &x| x < 3), 0); assert_eq!(b.partition_point(|_, &x| x < 4), 0); assert_eq!(b.partition_point(|_, &x| x < 5), 1); let b: OrderMap<_, i32> = [1, 2, 4, 6, 8, 9] .into_iter() .enumerate() .map(|(i, x)| (i + 100, x)) .collect(); assert_eq!(b.partition_point(|_, &x| x < 5), 3); assert_eq!(b.partition_point(|_, &x| x < 6), 3); assert_eq!(b.partition_point(|_, &x| x < 7), 4); assert_eq!(b.partition_point(|_, &x| x < 8), 4); let b: OrderMap<_, i32> = [1, 2, 4, 5, 6, 8] .into_iter() .enumerate() .map(|(i, x)| (i + 100, x)) .collect(); assert_eq!(b.partition_point(|_, &x| x < 9), 6); let b: OrderMap<_, i32> = [1, 2, 4, 6, 7, 8, 9] .into_iter() .enumerate() .map(|(i, x)| (i + 100, x)) .collect(); assert_eq!(b.partition_point(|_, &x| x < 6), 3); assert_eq!(b.partition_point(|_, &x| x < 5), 3); assert_eq!(b.partition_point(|_, &x| x < 8), 5); let b: OrderMap<_, i32> = [1, 2, 4, 5, 6, 8, 9] .into_iter() .enumerate() .map(|(i, x)| (i + 100, x)) .collect(); assert_eq!(b.partition_point(|_, &x| x < 7), 5); assert_eq!(b.partition_point(|_, &x| x < 0), 0); let b: OrderMap<_, i32> = [1, 3, 3, 3, 7] .into_iter() .enumerate() .map(|(i, x)| (i + 100, x)) .collect(); assert_eq!(b.partition_point(|_, &x| x < 0), 0); assert_eq!(b.partition_point(|_, &x| x < 1), 0); assert_eq!(b.partition_point(|_, &x| x < 2), 1); assert_eq!(b.partition_point(|_, &x| x < 3), 1); assert_eq!(b.partition_point(|_, &x| x < 4), 4); assert_eq!(b.partition_point(|_, &x| x < 5), 4); assert_eq!(b.partition_point(|_, &x| x < 6), 4); assert_eq!(b.partition_point(|_, &x| x < 7), 4); assert_eq!(b.partition_point(|_, &x| x < 8), 5); } #[test] fn disjoint_mut_empty_map() { let mut map: OrderMap = OrderMap::default(); assert_eq!( map.get_disjoint_mut([&0, &1, &2, &3]), [None, None, None, None] ); } #[test] fn disjoint_mut_empty_param() { let mut map: OrderMap = OrderMap::default(); map.insert(1, 10); assert_eq!(map.get_disjoint_mut([] as [&u32; 0]), []); } #[test] fn disjoint_mut_single_fail() { let mut map: OrderMap = OrderMap::default(); map.insert(1, 10); assert_eq!(map.get_disjoint_mut([&0]), [None]); } #[test] fn disjoint_mut_single_success() { let mut map: OrderMap = OrderMap::default(); map.insert(1, 10); assert_eq!(map.get_disjoint_mut([&1]), [Some(&mut 10)]); } #[test] fn disjoint_mut_multi_success() { let mut map: OrderMap = OrderMap::default(); map.insert(1, 100); map.insert(2, 200); map.insert(3, 300); map.insert(4, 400); assert_eq!( map.get_disjoint_mut([&1, &2]), [Some(&mut 100), Some(&mut 200)] ); assert_eq!( map.get_disjoint_mut([&1, &3]), [Some(&mut 100), Some(&mut 300)] ); assert_eq!( map.get_disjoint_mut([&3, &1, &4, &2]), [ Some(&mut 300), Some(&mut 100), Some(&mut 400), Some(&mut 200) ] ); } #[test] fn disjoint_mut_multi_success_unsized_key() { let mut map: OrderMap<&'static str, u32> = OrderMap::default(); map.insert("1", 100); map.insert("2", 200); map.insert("3", 300); map.insert("4", 400); assert_eq!( map.get_disjoint_mut(["1", "2"]), [Some(&mut 100), Some(&mut 200)] ); assert_eq!( map.get_disjoint_mut(["1", "3"]), [Some(&mut 100), Some(&mut 300)] ); assert_eq!( map.get_disjoint_mut(["3", "1", "4", "2"]), [ Some(&mut 300), Some(&mut 100), Some(&mut 400), Some(&mut 200) ] ); } #[test] fn disjoint_mut_multi_success_borrow_key() { let mut map: OrderMap = OrderMap::default(); map.insert("1".into(), 100); map.insert("2".into(), 200); map.insert("3".into(), 300); map.insert("4".into(), 400); assert_eq!( map.get_disjoint_mut(["1", "2"]), [Some(&mut 100), Some(&mut 200)] ); assert_eq!( map.get_disjoint_mut(["1", "3"]), [Some(&mut 100), Some(&mut 300)] ); assert_eq!( map.get_disjoint_mut(["3", "1", "4", "2"]), [ Some(&mut 300), Some(&mut 100), Some(&mut 400), Some(&mut 200) ] ); } #[test] fn disjoint_mut_multi_fail_missing() { let mut map: OrderMap = OrderMap::default(); map.insert(1, 100); map.insert(2, 200); map.insert(3, 300); map.insert(4, 400); assert_eq!(map.get_disjoint_mut([&1, &5]), [Some(&mut 100), None]); assert_eq!(map.get_disjoint_mut([&5, &6]), [None, None]); assert_eq!( map.get_disjoint_mut([&1, &5, &4]), [Some(&mut 100), None, Some(&mut 400)] ); } #[test] #[should_panic] fn disjoint_mut_multi_fail_duplicate_panic() { let mut map: OrderMap = OrderMap::default(); map.insert(1, 100); map.get_disjoint_mut([&1, &2, &1]); } #[test] fn disjoint_indices_mut_fail_oob() { let mut map: OrderMap = OrderMap::default(); map.insert(1, 10); map.insert(321, 20); assert_eq!( map.get_disjoint_indices_mut([1, 3]), Err(crate::GetDisjointMutError::IndexOutOfBounds) ); } #[test] fn disjoint_indices_mut_empty() { let mut map: OrderMap = OrderMap::default(); map.insert(1, 10); map.insert(321, 20); assert_eq!(map.get_disjoint_indices_mut([]), Ok([])); } #[test] fn disjoint_indices_mut_success() { let mut map: OrderMap = OrderMap::default(); map.insert(1, 10); map.insert(321, 20); assert_eq!(map.get_disjoint_indices_mut([0]), Ok([(&1, &mut 10)])); assert_eq!(map.get_disjoint_indices_mut([1]), Ok([(&321, &mut 20)])); assert_eq!( map.get_disjoint_indices_mut([0, 1]), Ok([(&1, &mut 10), (&321, &mut 20)]) ); } #[test] fn disjoint_indices_mut_fail_duplicate() { let mut map: OrderMap = OrderMap::default(); map.insert(1, 10); map.insert(321, 20); assert_eq!( map.get_disjoint_indices_mut([1, 0, 1]), Err(crate::GetDisjointMutError::OverlappingIndices) ); } #[test] fn insert_sorted_by_key() { let mut values = [(-1, 8), (3, 18), (-27, 2), (-2, 5)]; let mut map: OrderMap = OrderMap::new(); for (key, value) in values { let (_, old) = map.insert_sorted_by_key(key, value, |k, _| k.abs()); assert_eq!(old, None); } values.sort_by_key(|(key, _)| key.abs()); assert_eq!(values, *map.as_slice()); for (key, value) in &mut values { let (_, old) = map.insert_sorted_by_key(*key, -*value, |k, _| k.abs()); assert_eq!(old, Some(*value)); *value = -*value; } assert_eq!(values, *map.as_slice()); } #[test] fn insert_sorted_by() { let mut values = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)]; let mut map: OrderMap = OrderMap::new(); for (key, value) in values { let (_, old) = map.insert_sorted_by(key, value, |key1, _, key2, _| key2.cmp(key1)); assert_eq!(old, None); } values.reverse(); assert_eq!(values, *map.as_slice()); for (key, value) in &mut values { let (_, old) = map.insert_sorted_by(*key, -*value, |key1, _, key2, _| key2.cmp(key1)); assert_eq!(old, Some(*value)); *value = -*value; } assert_eq!(values, *map.as_slice()); } #[test] fn is_sorted() { fn expect(map: &OrderMap, e: [bool; 7]) { assert_eq!(e[0], map.is_sorted()); assert_eq!(e[1], map.is_sorted_by(|k1, _, k2, _| k1 < k2)); assert_eq!(e[2], map.is_sorted_by(|k1, _, k2, _| k1 > k2)); assert_eq!(e[3], map.is_sorted_by(|_, v1, _, v2| v1 < v2)); assert_eq!(e[4], map.is_sorted_by(|_, v1, _, v2| v1 > v2)); assert_eq!(e[5], map.is_sorted_by_key(|k, _| k)); assert_eq!(e[6], map.is_sorted_by_key(|_, v| v)); } let mut map = OrderMap::from_iter((0..10).map(|i| (i, i * i))); expect(&map, [true, true, false, true, false, true, true]); map[5] = -1; expect(&map, [true, true, false, false, false, true, false]); map[5] = 25; map.replace_index(5, -1).unwrap(); expect(&map, [false, false, false, true, false, false, true]); } #[test] fn is_sorted_trivial() { fn expect(map: &OrderMap, e: [bool; 5]) { assert_eq!(e[0], map.is_sorted()); assert_eq!(e[1], map.is_sorted_by(|_, _, _, _| true)); assert_eq!(e[2], map.is_sorted_by(|_, _, _, _| false)); assert_eq!(e[3], map.is_sorted_by_key(|_, _| 0f64)); assert_eq!(e[4], map.is_sorted_by_key(|_, _| f64::NAN)); } let mut map = OrderMap::new(); expect(&map, [true, true, true, true, true]); map.insert(0, 0); expect(&map, [true, true, true, true, true]); map.insert(1, 1); expect(&map, [true, true, false, true, false]); map.reverse(); expect(&map, [false, true, false, true, false]); } ordermap-1.1.0/src/map.rs000064400000000000000000001562161046102023000133610ustar 00000000000000//! [`OrderMap`] is a hash table where the iteration order of the key-value //! pairs is independent of the hash values of the keys. //! //! It is based on [`IndexMap`], and even shares many of the auxiliary types //! like [`Slice`] and all of the iterators. //! //! **Unlike** `IndexMap`, `OrderMap` does consider the order for [`PartialEq`] //! and [`Eq`], and it also implements [`PartialOrd`], [`Ord`], and [`Hash`]. //! Methods like [`OrderMap::remove`] use `IndexMap`'s "shift" semantics, so //! they preserve the relative order of remaining entries. mod entry; mod iter; mod mutable; mod slice; pub mod raw_entry_v1; #[cfg(feature = "serde")] #[cfg_attr(docsrs, doc(cfg(feature = "serde")))] pub mod serde_seq; #[cfg(test)] mod tests; pub use self::entry::{Entry, IndexedEntry, OccupiedEntry, VacantEntry}; pub use self::mutable::MutableEntryKey; pub use self::mutable::MutableKeys; pub use self::raw_entry_v1::RawEntryApiV1; pub use indexmap::map::{ Drain, ExtractIf, IntoIter, IntoKeys, IntoValues, Iter, IterMut, IterMut2, Keys, Slice, Splice, Values, ValuesMut, }; #[cfg(feature = "rayon")] #[cfg_attr(docsrs, doc(cfg(feature = "rayon")))] pub mod rayon; use alloc::boxed::Box; use core::cmp::Ordering; use core::fmt; use core::hash::{BuildHasher, Hash, Hasher}; use core::ops::{Index, IndexMut, RangeBounds}; use indexmap::IndexMap; #[cfg(doc)] use alloc::vec::Vec; #[cfg(feature = "std")] use std::hash::RandomState; use crate::{Equivalent, GetDisjointMutError, TryReserveError}; /// A hash table where the iteration order of the key-value pairs is independent /// of the hash values of the keys. /// /// The interface is closely compatible with the standard /// [`HashMap`][std::collections::HashMap], /// but also has additional features. /// /// # Order /// /// The key-value pairs have a consistent order that is determined by /// the sequence of insertion and removal calls on the map. The order does /// not depend on the keys or the hash function at all. /// /// All iterators traverse the map in *the order*. /// /// The insertion order is preserved, with **notable exceptions** like the /// [`.swap_remove()`][Self::swap_remove] method. /// Methods such as [`.sort_by()`][Self::sort_by] of /// course result in a new order, depending on the sorting order. /// /// # Indices /// /// The key-value pairs are indexed in a compact range without holes in the /// range `0..self.len()`. For example, the method `.get_full` looks up the /// index for a key, and the method `.get_index` looks up the key-value pair by /// index. /// /// # Complexity /// /// Internally, `OrderMap` just holds an [`IndexMap`](IndexMap). /// Thus the complexity of the two are the same for most methods. /// /// # Examples /// /// ``` /// use ordermap::OrderMap; /// /// // count the frequency of each letter in a sentence. /// let mut letters = OrderMap::new(); /// for ch in "a short treatise on fungi".chars() { /// *letters.entry(ch).or_insert(0) += 1; /// } /// /// assert_eq!(letters[&'s'], 2); /// assert_eq!(letters[&'t'], 3); /// assert_eq!(letters[&'u'], 1); /// assert_eq!(letters.get(&'y'), None); /// ``` #[cfg(feature = "std")] pub struct OrderMap { pub(crate) inner: IndexMap, } #[cfg(not(feature = "std"))] pub struct OrderMap { pub(crate) inner: IndexMap, } impl Clone for OrderMap where K: Clone, V: Clone, S: Clone, { fn clone(&self) -> Self { Self { inner: self.inner.clone(), } } fn clone_from(&mut self, other: &Self) { self.inner.clone_from(&other.inner); } } impl fmt::Debug for OrderMap where K: fmt::Debug, V: fmt::Debug, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_map().entries(self.iter()).finish() } } #[cfg(feature = "std")] #[cfg_attr(docsrs, doc(cfg(feature = "std")))] impl OrderMap { /// Create a new map. (Does not allocate.) #[inline] pub fn new() -> Self { Self { inner: IndexMap::new(), } } /// Create a new map with capacity for `n` key-value pairs. (Does not /// allocate if `n` is zero.) /// /// Computes in **O(n)** time. #[inline] pub fn with_capacity(n: usize) -> Self { Self { inner: IndexMap::with_capacity(n), } } } impl OrderMap { /// Create a new map with capacity for `n` key-value pairs. (Does not /// allocate if `n` is zero.) /// /// Computes in **O(n)** time. #[inline] pub fn with_capacity_and_hasher(n: usize, hash_builder: S) -> Self { Self { inner: IndexMap::with_capacity_and_hasher(n, hash_builder), } } /// Create a new map with `hash_builder`. /// /// This function is `const`, so it /// can be called in `static` contexts. pub const fn with_hasher(hash_builder: S) -> Self { Self { inner: IndexMap::with_hasher(hash_builder), } } /// Return the number of elements the map can hold without reallocating. /// /// This number is a lower bound; the map might be able to hold more, /// but is guaranteed to be able to hold at least this many. /// /// Computes in **O(1)** time. pub fn capacity(&self) -> usize { self.inner.capacity() } /// Return a reference to the map's `BuildHasher`. pub fn hasher(&self) -> &S { self.inner.hasher() } /// Return the number of key-value pairs in the map. /// /// Computes in **O(1)** time. #[inline] pub fn len(&self) -> usize { self.inner.len() } /// Returns true if the map contains no elements. /// /// Computes in **O(1)** time. #[inline] pub fn is_empty(&self) -> bool { self.inner.is_empty() } /// Return an iterator over the key-value pairs of the map, in their order pub fn iter(&self) -> Iter<'_, K, V> { self.inner.iter() } /// Return an iterator over the key-value pairs of the map, in their order pub fn iter_mut(&mut self) -> IterMut<'_, K, V> { self.inner.iter_mut() } /// Return an iterator over the keys of the map, in their order pub fn keys(&self) -> Keys<'_, K, V> { self.inner.keys() } /// Return an owning iterator over the keys of the map, in their order pub fn into_keys(self) -> IntoKeys { self.inner.into_keys() } /// Return an iterator over the values of the map, in their order pub fn values(&self) -> Values<'_, K, V> { self.inner.values() } /// Return an iterator over mutable references to the values of the map, /// in their order pub fn values_mut(&mut self) -> ValuesMut<'_, K, V> { self.inner.values_mut() } /// Return an owning iterator over the values of the map, in their order pub fn into_values(self) -> IntoValues { self.inner.into_values() } /// Remove all key-value pairs in the map, while preserving its capacity. /// /// Computes in **O(n)** time. pub fn clear(&mut self) { self.inner.clear(); } /// Shortens the map, keeping the first `len` elements and dropping the rest. /// /// If `len` is greater than the map's current length, this has no effect. pub fn truncate(&mut self, len: usize) { self.inner.truncate(len); } /// Clears the `OrderMap` in the given index range, returning those /// key-value pairs as a drain iterator. /// /// The range may be any type that implements [`RangeBounds`], /// including all of the `std::ops::Range*` types, or even a tuple pair of /// `Bound` start and end values. To drain the map entirely, use `RangeFull` /// like `map.drain(..)`. /// /// This shifts down all entries following the drained range to fill the /// gap, and keeps the allocated memory for reuse. /// /// ***Panics*** if the starting point is greater than the end point or if /// the end point is greater than the length of the map. #[track_caller] pub fn drain(&mut self, range: R) -> Drain<'_, K, V> where R: RangeBounds, { self.inner.drain(range) } /// Creates an iterator which uses a closure to determine if an element should be removed, /// for all elements in the given range. /// /// If the closure returns true, the element is removed from the map and yielded. /// If the closure returns false, or panics, the element remains in the map and will not be /// yielded. /// /// Note that `extract_if` lets you mutate every value in the filter closure, regardless of /// whether you choose to keep or remove it. /// /// The range may be any type that implements [`RangeBounds`], /// including all of the `std::ops::Range*` types, or even a tuple pair of /// `Bound` start and end values. To check the entire map, use `RangeFull` /// like `map.extract_if(.., predicate)`. /// /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating /// or the iteration short-circuits, then the remaining elements will be retained. /// Use [`retain`] with a negated predicate if you do not need the returned iterator. /// /// [`retain`]: OrderMap::retain /// /// ***Panics*** if the starting point is greater than the end point or if /// the end point is greater than the length of the map. /// /// # Examples /// /// Splitting a map into even and odd keys, reusing the original map: /// /// ``` /// use ordermap::OrderMap; /// /// let mut map: OrderMap = (0..8).map(|x| (x, x)).collect(); /// let extracted: OrderMap = map.extract_if(.., |k, _v| k % 2 == 0).collect(); /// /// let evens = extracted.keys().copied().collect::>(); /// let odds = map.keys().copied().collect::>(); /// /// assert_eq!(evens, vec![0, 2, 4, 6]); /// assert_eq!(odds, vec![1, 3, 5, 7]); /// ``` #[track_caller] pub fn extract_if(&mut self, range: R, pred: F) -> ExtractIf<'_, K, V, F> where F: FnMut(&K, &mut V) -> bool, R: RangeBounds, { self.inner.extract_if(range, pred) } /// Splits the collection into two at the given index. /// /// Returns a newly allocated map containing the elements in the range /// `[at, len)`. After the call, the original map will be left containing /// the elements `[0, at)` with its previous capacity unchanged. /// /// ***Panics*** if `at > len`. #[track_caller] pub fn split_off(&mut self, at: usize) -> Self where S: Clone, { Self { inner: self.inner.split_off(at), } } /// Reserve capacity for `additional` more key-value pairs. /// /// Computes in **O(n)** time. pub fn reserve(&mut self, additional: usize) { self.inner.reserve(additional); } /// Reserve capacity for `additional` more key-value pairs, without over-allocating. /// /// Unlike `reserve`, this does not deliberately over-allocate the entry capacity to avoid /// frequent re-allocations. However, the underlying data structures may still have internal /// capacity requirements, and the allocator itself may give more space than requested, so this /// cannot be relied upon to be precisely minimal. /// /// Computes in **O(n)** time. pub fn reserve_exact(&mut self, additional: usize) { self.inner.reserve_exact(additional); } /// Try to reserve capacity for `additional` more key-value pairs. /// /// Computes in **O(n)** time. pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> { self.inner.try_reserve(additional) } /// Try to reserve capacity for `additional` more key-value pairs, without over-allocating. /// /// Unlike `try_reserve`, this does not deliberately over-allocate the entry capacity to avoid /// frequent re-allocations. However, the underlying data structures may still have internal /// capacity requirements, and the allocator itself may give more space than requested, so this /// cannot be relied upon to be precisely minimal. /// /// Computes in **O(n)** time. pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> { self.inner.try_reserve_exact(additional) } /// Shrink the capacity of the map as much as possible. /// /// Computes in **O(n)** time. pub fn shrink_to_fit(&mut self) { self.inner.shrink_to(0); } /// Shrink the capacity of the map with a lower limit. /// /// Computes in **O(n)** time. pub fn shrink_to(&mut self, min_capacity: usize) { self.inner.shrink_to(min_capacity); } } impl OrderMap where K: Hash + Eq, S: BuildHasher, { /// Insert a key-value pair in the map. /// /// If an equivalent key already exists in the map: the key remains and /// retains in its place in the order, its corresponding value is updated /// with `value`, and the older value is returned inside `Some(_)`. /// /// If no equivalent key existed in the map: the new key-value pair is /// inserted, last in order, and `None` is returned. /// /// Computes in **O(1)** time (amortized average). /// /// See also [`entry`][Self::entry] if you want to insert *or* modify, /// or [`insert_full`][Self::insert_full] if you need to get the index of /// the corresponding key-value pair. pub fn insert(&mut self, key: K, value: V) -> Option { self.inner.insert(key, value) } /// Insert a key-value pair in the map, and get their index. /// /// If an equivalent key already exists in the map: the key remains and /// retains in its place in the order, its corresponding value is updated /// with `value`, and the older value is returned inside `(index, Some(_))`. /// /// If no equivalent key existed in the map: the new key-value pair is /// inserted, last in order, and `(index, None)` is returned. /// /// Computes in **O(1)** time (amortized average). /// /// See also [`entry`][Self::entry] if you want to insert *or* modify. pub fn insert_full(&mut self, key: K, value: V) -> (usize, Option) { self.inner.insert_full(key, value) } /// Insert a key-value pair in the map at its ordered position among sorted keys. /// /// This is equivalent to finding the position with /// [`binary_search_keys`][Self::binary_search_keys], then either updating /// it or calling [`insert_before`][Self::insert_before] for a new key. /// /// If the sorted key is found in the map, its corresponding value is /// updated with `value`, and the older value is returned inside /// `(index, Some(_))`. Otherwise, the new key-value pair is inserted at /// the sorted position, and `(index, None)` is returned. /// /// If the existing keys are **not** already sorted, then the insertion /// index is unspecified (like [`slice::binary_search`]), but the key-value /// pair is moved to or inserted at that position regardless. /// /// Computes in **O(n)** time (average). Instead of repeating calls to /// `insert_sorted`, it may be faster to call batched [`insert`][Self::insert] /// or [`extend`][Self::extend] and only call [`sort_keys`][Self::sort_keys] /// or [`sort_unstable_keys`][Self::sort_unstable_keys] once. pub fn insert_sorted(&mut self, key: K, value: V) -> (usize, Option) where K: Ord, { self.inner.insert_sorted(key, value) } /// Insert a key-value pair in the map at its ordered position among keys /// sorted by `cmp`. /// /// This is equivalent to finding the position with /// [`binary_search_by`][Self::binary_search_by], then calling /// [`insert_before`][Self::insert_before] with the given key and value. /// /// If the existing keys are **not** already sorted, then the insertion /// index is unspecified (like [`slice::binary_search`]), but the key-value /// pair is moved to or inserted at that position regardless. /// /// Computes in **O(n)** time (average). pub fn insert_sorted_by(&mut self, key: K, value: V, cmp: F) -> (usize, Option) where F: FnMut(&K, &V, &K, &V) -> Ordering, { self.inner.insert_sorted_by(key, value, cmp) } /// Insert a key-value pair in the map at its ordered position /// using a sort-key extraction function. /// /// This is equivalent to finding the position with /// [`binary_search_by_key`][Self::binary_search_by_key] with `sort_key(key)`, then /// calling [`insert_before`][Self::insert_before] with the given key and value. /// /// If the existing keys are **not** already sorted, then the insertion /// index is unspecified (like [`slice::binary_search`]), but the key-value /// pair is moved to or inserted at that position regardless. /// /// Computes in **O(n)** time (average). pub fn insert_sorted_by_key( &mut self, key: K, value: V, sort_key: F, ) -> (usize, Option) where B: Ord, F: FnMut(&K, &V) -> B, { self.inner.insert_sorted_by_key(key, value, sort_key) } /// Insert a key-value pair in the map before the entry at the given index, or at the end. /// /// If an equivalent key already exists in the map: the key remains and /// is moved to the new position in the map, its corresponding value is updated /// with `value`, and the older value is returned inside `Some(_)`. The returned index /// will either be the given index or one less, depending on how the entry moved. /// (See [`shift_insert`](Self::shift_insert) for different behavior here.) /// /// If no equivalent key existed in the map: the new key-value pair is /// inserted exactly at the given index, and `None` is returned. /// /// ***Panics*** if `index` is out of bounds. /// Valid indices are `0..=map.len()` (inclusive). /// /// Computes in **O(n)** time (average). /// /// See also [`entry`][Self::entry] if you want to insert *or* modify, /// perhaps only using the index for new entries with [`VacantEntry::shift_insert`]. /// /// # Examples /// /// ``` /// use ordermap::OrderMap; /// let mut map: OrderMap = ('a'..='z').map(|c| (c, ())).collect(); /// /// // The new key '*' goes exactly at the given index. /// assert_eq!(map.get_index_of(&'*'), None); /// assert_eq!(map.insert_before(10, '*', ()), (10, None)); /// assert_eq!(map.get_index_of(&'*'), Some(10)); /// /// // Moving the key 'a' up will shift others down, so this moves *before* 10 to index 9. /// assert_eq!(map.insert_before(10, 'a', ()), (9, Some(()))); /// assert_eq!(map.get_index_of(&'a'), Some(9)); /// assert_eq!(map.get_index_of(&'*'), Some(10)); /// /// // Moving the key 'z' down will shift others up, so this moves to exactly 10. /// assert_eq!(map.insert_before(10, 'z', ()), (10, Some(()))); /// assert_eq!(map.get_index_of(&'z'), Some(10)); /// assert_eq!(map.get_index_of(&'*'), Some(11)); /// /// // Moving or inserting before the endpoint is also valid. /// assert_eq!(map.len(), 27); /// assert_eq!(map.insert_before(map.len(), '*', ()), (26, Some(()))); /// assert_eq!(map.get_index_of(&'*'), Some(26)); /// assert_eq!(map.insert_before(map.len(), '+', ()), (27, None)); /// assert_eq!(map.get_index_of(&'+'), Some(27)); /// assert_eq!(map.len(), 28); /// ``` #[track_caller] pub fn insert_before(&mut self, index: usize, key: K, value: V) -> (usize, Option) { self.inner.insert_before(index, key, value) } /// Insert a key-value pair in the map at the given index. /// /// If an equivalent key already exists in the map: the key remains and /// is moved to the given index in the map, its corresponding value is updated /// with `value`, and the older value is returned inside `Some(_)`. /// Note that existing entries **cannot** be moved to `index == map.len()`! /// (See [`insert_before`](Self::insert_before) for different behavior here.) /// /// If no equivalent key existed in the map: the new key-value pair is /// inserted at the given index, and `None` is returned. /// /// ***Panics*** if `index` is out of bounds. /// Valid indices are `0..map.len()` (exclusive) when moving an existing entry, or /// `0..=map.len()` (inclusive) when inserting a new key. /// /// Computes in **O(n)** time (average). /// /// See also [`entry`][Self::entry] if you want to insert *or* modify, /// perhaps only using the index for new entries with [`VacantEntry::shift_insert`]. /// /// # Examples /// /// ``` /// use ordermap::OrderMap; /// let mut map: OrderMap = ('a'..='z').map(|c| (c, ())).collect(); /// /// // The new key '*' goes exactly at the given index. /// assert_eq!(map.get_index_of(&'*'), None); /// assert_eq!(map.shift_insert(10, '*', ()), None); /// assert_eq!(map.get_index_of(&'*'), Some(10)); /// /// // Moving the key 'a' up to 10 will shift others down, including the '*' that was at 10. /// assert_eq!(map.shift_insert(10, 'a', ()), Some(())); /// assert_eq!(map.get_index_of(&'a'), Some(10)); /// assert_eq!(map.get_index_of(&'*'), Some(9)); /// /// // Moving the key 'z' down to 9 will shift others up, including the '*' that was at 9. /// assert_eq!(map.shift_insert(9, 'z', ()), Some(())); /// assert_eq!(map.get_index_of(&'z'), Some(9)); /// assert_eq!(map.get_index_of(&'*'), Some(10)); /// /// // Existing keys can move to len-1 at most, but new keys can insert at the endpoint. /// assert_eq!(map.len(), 27); /// assert_eq!(map.shift_insert(map.len() - 1, '*', ()), Some(())); /// assert_eq!(map.get_index_of(&'*'), Some(26)); /// assert_eq!(map.shift_insert(map.len(), '+', ()), None); /// assert_eq!(map.get_index_of(&'+'), Some(27)); /// assert_eq!(map.len(), 28); /// ``` /// /// ```should_panic /// use ordermap::OrderMap; /// let mut map: OrderMap = ('a'..='z').map(|c| (c, ())).collect(); /// /// // This is an invalid index for moving an existing key! /// map.shift_insert(map.len(), 'a', ()); /// ``` #[track_caller] pub fn shift_insert(&mut self, index: usize, key: K, value: V) -> Option { self.inner.shift_insert(index, key, value) } /// Replaces the key at the given index. The new key does not need to be /// equivalent to the one it is replacing, but it must be unique to the rest /// of the map. /// /// Returns `Ok(old_key)` if successful, or `Err((other_index, key))` if an /// equivalent key already exists at a different index. The map will be /// unchanged in the error case. /// /// Direct indexing can be used to change the corresponding value: simply /// `map[index] = value`, or `mem::replace(&mut map[index], value)` to /// retrieve the old value as well. /// /// ***Panics*** if `index` is out of bounds. /// /// Computes in **O(1)** time (average). #[track_caller] pub fn replace_index(&mut self, index: usize, key: K) -> Result { self.inner.replace_index(index, key) } /// Get the given key's corresponding entry in the map for insertion and/or /// in-place manipulation. /// /// Computes in **O(1)** time (amortized average). pub fn entry(&mut self, key: K) -> Entry<'_, K, V> { Entry::new(self.inner.entry(key)) } /// Creates a splicing iterator that replaces the specified range in the map /// with the given `replace_with` key-value iterator and yields the removed /// items. `replace_with` does not need to be the same length as `range`. /// /// The `range` is removed even if the iterator is not consumed until the /// end. It is unspecified how many elements are removed from the map if the /// `Splice` value is leaked. /// /// The input iterator `replace_with` is only consumed when the `Splice` /// value is dropped. If a key from the iterator matches an existing entry /// in the map (outside of `range`), then the value will be updated in that /// position. Otherwise, the new key-value pair will be inserted in the /// replaced `range`. /// /// ***Panics*** if the starting point is greater than the end point or if /// the end point is greater than the length of the map. /// /// # Examples /// /// ``` /// use ordermap::OrderMap; /// /// let mut map = OrderMap::from([(0, '_'), (1, 'a'), (2, 'b'), (3, 'c'), (4, 'd')]); /// let new = [(5, 'E'), (4, 'D'), (3, 'C'), (2, 'B'), (1, 'A')]; /// let removed: Vec<_> = map.splice(2..4, new).collect(); /// /// // 1 and 4 got new values, while 5, 3, and 2 were newly inserted. /// assert!(map.into_iter().eq([(0, '_'), (1, 'A'), (5, 'E'), (3, 'C'), (2, 'B'), (4, 'D')])); /// assert_eq!(removed, &[(2, 'b'), (3, 'c')]); /// ``` #[track_caller] pub fn splice(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, K, V, S> where R: RangeBounds, I: IntoIterator, { self.inner.splice(range, replace_with) } /// Moves all key-value pairs from `other` into `self`, leaving `other` empty. /// /// This is equivalent to calling [`insert`][Self::insert] for each /// key-value pair from `other` in order, which means that for keys that /// already exist in `self`, their value is updated in the current position. /// /// # Examples /// /// ``` /// use ordermap::OrderMap; /// /// // Note: Key (3) is present in both maps. /// let mut a = OrderMap::from([(3, "c"), (2, "b"), (1, "a")]); /// let mut b = OrderMap::from([(3, "d"), (4, "e"), (5, "f")]); /// let old_capacity = b.capacity(); /// /// a.append(&mut b); /// /// assert_eq!(a.len(), 5); /// assert_eq!(b.len(), 0); /// assert_eq!(b.capacity(), old_capacity); /// /// assert!(a.keys().eq(&[3, 2, 1, 4, 5])); /// assert_eq!(a[&3], "d"); // "c" was overwritten. /// ``` pub fn append(&mut self, other: &mut OrderMap) { self.inner.append(&mut other.inner); } } impl OrderMap where S: BuildHasher, { /// Return `true` if an equivalent to `key` exists in the map. /// /// Computes in **O(1)** time (average). pub fn contains_key(&self, key: &Q) -> bool where Q: ?Sized + Hash + Equivalent, { self.inner.contains_key(key) } /// Return a reference to the stored value for `key`, if it is present, /// else `None`. /// /// Computes in **O(1)** time (average). pub fn get(&self, key: &Q) -> Option<&V> where Q: ?Sized + Hash + Equivalent, { self.inner.get(key) } /// Return references to the stored key-value pair for the lookup `key`, /// if it is present, else `None`. /// /// Computes in **O(1)** time (average). pub fn get_key_value(&self, key: &Q) -> Option<(&K, &V)> where Q: ?Sized + Hash + Equivalent, { self.inner.get_key_value(key) } /// Return the index with references to the stored key-value pair for the /// lookup `key`, if it is present, else `None`. /// /// Computes in **O(1)** time (average). pub fn get_full(&self, key: &Q) -> Option<(usize, &K, &V)> where Q: ?Sized + Hash + Equivalent, { self.inner.get_full(key) } /// Return the item index for `key`, if it is present, else `None`. /// /// Computes in **O(1)** time (average). pub fn get_index_of(&self, key: &Q) -> Option where Q: ?Sized + Hash + Equivalent, { self.inner.get_index_of(key) } /// Return a mutable reference to the stored value for `key`, /// if it is present, else `None`. /// /// Computes in **O(1)** time (average). pub fn get_mut(&mut self, key: &Q) -> Option<&mut V> where Q: ?Sized + Hash + Equivalent, { self.inner.get_mut(key) } /// Return a reference and mutable references to the stored key-value pair /// for the lookup `key`, if it is present, else `None`. /// /// Computes in **O(1)** time (average). pub fn get_key_value_mut(&mut self, key: &Q) -> Option<(&K, &mut V)> where Q: ?Sized + Hash + Equivalent, { self.inner.get_key_value_mut(key) } /// Return the index with a reference and mutable reference to the stored /// key-value pair for the lookup `key`, if it is present, else `None`. /// /// Computes in **O(1)** time (average). pub fn get_full_mut(&mut self, key: &Q) -> Option<(usize, &K, &mut V)> where Q: ?Sized + Hash + Equivalent, { self.inner.get_full_mut(key) } /// Return the values for `N` keys. If any key is duplicated, this function will panic. /// /// # Examples /// /// ``` /// let mut map = ordermap::OrderMap::from([(1, 'a'), (3, 'b'), (2, 'c')]); /// assert_eq!(map.get_disjoint_mut([&2, &1]), [Some(&mut 'c'), Some(&mut 'a')]); /// ``` pub fn get_disjoint_mut(&mut self, keys: [&Q; N]) -> [Option<&mut V>; N] where Q: ?Sized + Hash + Equivalent, { self.inner.get_disjoint_mut(keys) } /// Remove the key-value pair equivalent to `key` and return its value. /// /// **NOTE:** This is equivalent to [`IndexMap::shift_remove`], and /// like [`Vec::remove`], the pair is removed by shifting all of the /// elements that follow it, preserving their relative order. /// **This perturbs the index of all of those elements!** /// /// Return `None` if `key` is not in map. /// /// Computes in **O(n)** time (average). pub fn remove(&mut self, key: &Q) -> Option where Q: ?Sized + Hash + Equivalent, { self.inner.shift_remove(key) } /// Remove and return the key-value pair equivalent to `key`. /// /// **NOTE:** This is equivalent to [`IndexMap::shift_remove_entry`], and /// like [`Vec::remove`], the pair is removed by shifting all of the /// elements that follow it, preserving their relative order. /// **This perturbs the index of all of those elements!** /// /// Return `None` if `key` is not in map. /// /// Computes in **O(n)** time (average). pub fn remove_entry(&mut self, key: &Q) -> Option<(K, V)> where Q: ?Sized + Hash + Equivalent, { self.inner.shift_remove_entry(key) } /// Remove the key-value pair equivalent to `key` and return it and /// the index it had. /// /// **NOTE:** This is equivalent to [`IndexMap::shift_remove_full`], and /// like [`Vec::remove`], the pair is removed by shifting all of the /// elements that follow it, preserving their relative order. /// **This perturbs the index of all of those elements!** /// /// Return `None` if `key` is not in map. /// /// Computes in **O(n)** time (average). pub fn remove_full(&mut self, key: &Q) -> Option<(usize, K, V)> where Q: ?Sized + Hash + Equivalent, { self.inner.shift_remove_full(key) } /// Remove the key-value pair equivalent to `key` and return /// its value. /// /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the /// last element of the map and popping it off. **This perturbs /// the position of what used to be the last element!** /// /// Return `None` if `key` is not in map. /// /// Computes in **O(1)** time (average). pub fn swap_remove(&mut self, key: &Q) -> Option where Q: ?Sized + Hash + Equivalent, { self.inner.swap_remove(key) } /// Remove and return the key-value pair equivalent to `key`. /// /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the /// last element of the map and popping it off. **This perturbs /// the position of what used to be the last element!** /// /// Return `None` if `key` is not in map. /// /// Computes in **O(1)** time (average). pub fn swap_remove_entry(&mut self, key: &Q) -> Option<(K, V)> where Q: ?Sized + Hash + Equivalent, { self.inner.swap_remove_entry(key) } /// Remove the key-value pair equivalent to `key` and return it and /// the index it had. /// /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the /// last element of the map and popping it off. **This perturbs /// the position of what used to be the last element!** /// /// Return `None` if `key` is not in map. /// /// Computes in **O(1)** time (average). pub fn swap_remove_full(&mut self, key: &Q) -> Option<(usize, K, V)> where Q: ?Sized + Hash + Equivalent, { self.inner.swap_remove_full(key) } } impl OrderMap { /// Remove the last key-value pair /// /// This preserves the order of the remaining elements. /// /// Computes in **O(1)** time (average). #[doc(alias = "pop_last")] // like `BTreeMap` pub fn pop(&mut self) -> Option<(K, V)> { self.inner.pop() } /// Removes and returns the last key-value pair from a map if the predicate /// returns `true`, or [`None`] if the predicate returns false or the map /// is empty (the predicate will not be called in that case). /// /// This preserves the order of the remaining elements. /// /// Computes in **O(1)** time (average). /// /// # Examples /// /// ``` /// use ordermap::OrderMap; /// /// let init = [(1, 'a'), (2, 'b'), (3, 'c'), (4, 'd')]; /// let mut map = OrderMap::from(init); /// let pred = |key: &i32, _value: &mut char| *key % 2 == 0; /// /// assert_eq!(map.pop_if(pred), Some((4, 'd'))); /// assert_eq!(map.as_slice(), &init[..3]); /// assert_eq!(map.pop_if(pred), None); /// ``` pub fn pop_if(&mut self, predicate: impl FnOnce(&K, &mut V) -> bool) -> Option<(K, V)> { self.inner.pop_if(predicate) } /// Scan through each key-value pair in the map and keep those where the /// closure `keep` returns `true`. /// /// The elements are visited in order, and remaining elements keep their /// order. /// /// Computes in **O(n)** time (average). pub fn retain(&mut self, keep: F) where F: FnMut(&K, &mut V) -> bool, { self.inner.retain(keep); } /// Sort the map's key-value pairs by the default ordering of the keys. /// /// This is a stable sort -- but equivalent keys should not normally coexist in /// a map at all, so [`sort_unstable_keys`][Self::sort_unstable_keys] is preferred /// because it is generally faster and doesn't allocate auxiliary memory. /// /// See [`sort_by`](Self::sort_by) for details. pub fn sort_keys(&mut self) where K: Ord, { self.inner.sort_keys(); } /// Sort the map's key-value pairs in place using the comparison /// function `cmp`. /// /// The comparison function receives two key and value pairs to compare (you /// can sort by keys or values or their combination as needed). /// /// Computes in **O(n log n + c)** time and **O(n)** space where *n* is /// the length of the map and *c* the capacity. The sort is stable. pub fn sort_by(&mut self, cmp: F) where F: FnMut(&K, &V, &K, &V) -> Ordering, { self.inner.sort_by(cmp); } /// Sort the key-value pairs of the map and return a by-value iterator of /// the key-value pairs with the result. /// /// The sort is stable. pub fn sorted_by(self, cmp: F) -> IntoIter where F: FnMut(&K, &V, &K, &V) -> Ordering, { self.inner.sorted_by(cmp) } /// Sort the map's key-value pairs in place using a sort-key extraction function. /// /// Computes in **O(n log n + c)** time and **O(n)** space where *n* is /// the length of the map and *c* the capacity. The sort is stable. pub fn sort_by_key(&mut self, sort_key: F) where T: Ord, F: FnMut(&K, &V) -> T, { self.inner.sort_by_key(sort_key) } /// Sort the map's key-value pairs by the default ordering of the keys, but /// may not preserve the order of equal elements. /// /// See [`sort_unstable_by`](Self::sort_unstable_by) for details. pub fn sort_unstable_keys(&mut self) where K: Ord, { self.inner.sort_unstable_keys(); } /// Sort the map's key-value pairs in place using the comparison function `cmp`, but /// may not preserve the order of equal elements. /// /// The comparison function receives two key and value pairs to compare (you /// can sort by keys or values or their combination as needed). /// /// Computes in **O(n log n + c)** time where *n* is /// the length of the map and *c* is the capacity. The sort is unstable. pub fn sort_unstable_by(&mut self, cmp: F) where F: FnMut(&K, &V, &K, &V) -> Ordering, { self.inner.sort_unstable_by(cmp); } /// Sort the key-value pairs of the map and return a by-value iterator of /// the key-value pairs with the result. /// /// The sort is unstable. #[inline] pub fn sorted_unstable_by(self, cmp: F) -> IntoIter where F: FnMut(&K, &V, &K, &V) -> Ordering, { self.inner.sorted_unstable_by(cmp) } /// Sort the map's key-value pairs in place using a sort-key extraction function. /// /// Computes in **O(n log n + c)** time where *n* is /// the length of the map and *c* is the capacity. The sort is unstable. pub fn sort_unstable_by_key(&mut self, sort_key: F) where T: Ord, F: FnMut(&K, &V) -> T, { self.inner.sort_unstable_by_key(sort_key) } /// Sort the map's key-value pairs in place using a sort-key extraction function. /// /// During sorting, the function is called at most once per entry, by using temporary storage /// to remember the results of its evaluation. The order of calls to the function is /// unspecified and may change between versions of `ordermap` or the standard library. /// /// Computes in **O(m n + n log n + c)** time () and **O(n)** space, where the function is /// **O(m)**, *n* is the length of the map, and *c* the capacity. The sort is stable. pub fn sort_by_cached_key(&mut self, sort_key: F) where T: Ord, F: FnMut(&K, &V) -> T, { self.inner.sort_by_cached_key(sort_key); } /// Search over a sorted map for a key. /// /// Returns the position where that key is present, or the position where it can be inserted to /// maintain the sort. See [`slice::binary_search`] for more details. /// /// Computes in **O(log(n))** time, which is notably less scalable than looking the key up /// using [`get_index_of`][OrderMap::get_index_of], but this can also position missing keys. pub fn binary_search_keys(&self, x: &K) -> Result where K: Ord, { self.inner.binary_search_keys(x) } /// Search over a sorted map with a comparator function. /// /// Returns the position where that value is present, or the position where it can be inserted /// to maintain the sort. See [`slice::binary_search_by`] for more details. /// /// Computes in **O(log(n))** time. #[inline] pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result where F: FnMut(&'a K, &'a V) -> Ordering, { self.inner.binary_search_by(f) } /// Search over a sorted map with an extraction function. /// /// Returns the position where that value is present, or the position where it can be inserted /// to maintain the sort. See [`slice::binary_search_by_key`] for more details. /// /// Computes in **O(log(n))** time. #[inline] pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result where F: FnMut(&'a K, &'a V) -> B, B: Ord, { self.inner.binary_search_by_key(b, f) } /// Checks if the keys of this map are sorted. #[inline] pub fn is_sorted(&self) -> bool where K: PartialOrd, { self.inner.is_sorted() } /// Checks if this map is sorted using the given comparator function. #[inline] pub fn is_sorted_by<'a, F>(&'a self, cmp: F) -> bool where F: FnMut(&'a K, &'a V, &'a K, &'a V) -> bool, { self.inner.is_sorted_by(cmp) } /// Checks if this map is sorted using the given sort-key function. #[inline] pub fn is_sorted_by_key<'a, F, T>(&'a self, sort_key: F) -> bool where F: FnMut(&'a K, &'a V) -> T, T: PartialOrd, { self.inner.is_sorted_by_key(sort_key) } /// Returns the index of the partition point of a sorted map according to the given predicate /// (the index of the first element of the second partition). /// /// See [`slice::partition_point`] for more details. /// /// Computes in **O(log(n))** time. #[must_use] pub fn partition_point

(&self, pred: P) -> usize where P: FnMut(&K, &V) -> bool, { self.inner.partition_point(pred) } /// Reverses the order of the map's key-value pairs in place. /// /// Computes in **O(n)** time and **O(1)** space. pub fn reverse(&mut self) { self.inner.reverse() } /// Returns a slice of all the key-value pairs in the map. /// /// Computes in **O(1)** time. pub fn as_slice(&self) -> &Slice { self.inner.as_slice() } /// Returns a mutable slice of all the key-value pairs in the map. /// /// Computes in **O(1)** time. pub fn as_mut_slice(&mut self) -> &mut Slice { self.inner.as_mut_slice() } /// Converts into a boxed slice of all the key-value pairs in the map. /// /// Note that this will drop the inner hash table and any excess capacity. pub fn into_boxed_slice(self) -> Box> { self.inner.into_boxed_slice() } /// Get a key-value pair by index /// /// Valid indices are `0 <= index < self.len()`. /// /// Computes in **O(1)** time. pub fn get_index(&self, index: usize) -> Option<(&K, &V)> { self.inner.get_index(index) } /// Get a key-value pair by index /// /// Valid indices are `0 <= index < self.len()`. /// /// Computes in **O(1)** time. pub fn get_index_mut(&mut self, index: usize) -> Option<(&K, &mut V)> { self.inner.get_index_mut(index) } /// Get an entry in the map by index for in-place manipulation. /// /// Valid indices are `0 <= index < self.len()`. /// /// Computes in **O(1)** time. pub fn get_index_entry(&mut self, index: usize) -> Option> { self.inner.get_index_entry(index).map(IndexedEntry::new) } /// Get an array of `N` key-value pairs by `N` indices /// /// Valid indices are *0 <= index < self.len()* and each index needs to be unique. /// /// # Examples /// /// ``` /// let mut map = ordermap::OrderMap::from([(1, 'a'), (3, 'b'), (2, 'c')]); /// assert_eq!(map.get_disjoint_indices_mut([2, 0]), Ok([(&2, &mut 'c'), (&1, &mut 'a')])); /// ``` pub fn get_disjoint_indices_mut( &mut self, indices: [usize; N], ) -> Result<[(&K, &mut V); N], GetDisjointMutError> { self.as_mut_slice().get_disjoint_mut(indices) } /// Returns a slice of key-value pairs in the given range of indices. /// /// Valid indices are `0 <= index < self.len()`. /// /// Computes in **O(1)** time. pub fn get_range>(&self, range: R) -> Option<&Slice> { self.inner.get_range(range) } /// Returns a mutable slice of key-value pairs in the given range of indices. /// /// Valid indices are `0 <= index < self.len()`. /// /// Computes in **O(1)** time. pub fn get_range_mut>(&mut self, range: R) -> Option<&mut Slice> { self.inner.get_range_mut(range) } /// Get the first key-value pair /// /// Computes in **O(1)** time. #[doc(alias = "first_key_value")] // like `BTreeMap` pub fn first(&self) -> Option<(&K, &V)> { self.inner.first() } /// Get the first key-value pair, with mutable access to the value /// /// Computes in **O(1)** time. pub fn first_mut(&mut self) -> Option<(&K, &mut V)> { self.inner.first_mut() } /// Get the first entry in the map for in-place manipulation. /// /// Computes in **O(1)** time. pub fn first_entry(&mut self) -> Option> { self.inner.first_entry().map(IndexedEntry::new) } /// Get the last key-value pair /// /// Computes in **O(1)** time. #[doc(alias = "last_key_value")] // like `BTreeMap` pub fn last(&self) -> Option<(&K, &V)> { self.inner.last() } /// Get the last key-value pair, with mutable access to the value /// /// Computes in **O(1)** time. pub fn last_mut(&mut self) -> Option<(&K, &mut V)> { self.inner.last_mut() } /// Get the last entry in the map for in-place manipulation. /// /// Computes in **O(1)** time. pub fn last_entry(&mut self) -> Option> { self.inner.last_entry().map(IndexedEntry::new) } /// Remove the key-value pair by index /// /// Valid indices are `0 <= index < self.len()` /// /// **NOTE:** This is equivalent to [`IndexMap::shift_remove_index`], and /// like [`Vec::remove`], the pair is removed by shifting all of the /// elements that follow it, preserving their relative order. /// **This perturbs the index of all of those elements!** /// /// Computes in **O(n)** time (average). pub fn remove_index(&mut self, index: usize) -> Option<(K, V)> { self.inner.shift_remove_index(index) } /// Remove the key-value pair by index /// /// Valid indices are `0 <= index < self.len()`. /// /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the /// last element of the map and popping it off. **This perturbs /// the position of what used to be the last element!** /// /// Computes in **O(1)** time (average). pub fn swap_remove_index(&mut self, index: usize) -> Option<(K, V)> { self.inner.swap_remove_index(index) } /// Moves the position of a key-value pair from one index to another /// by shifting all other pairs in-between. /// /// * If `from < to`, the other pairs will shift down while the targeted pair moves up. /// * If `from > to`, the other pairs will shift up while the targeted pair moves down. /// /// ***Panics*** if `from` or `to` are out of bounds. /// /// Computes in **O(n)** time (average). #[track_caller] pub fn move_index(&mut self, from: usize, to: usize) { self.inner.move_index(from, to) } /// Swaps the position of two key-value pairs in the map. /// /// ***Panics*** if `a` or `b` are out of bounds. /// /// Computes in **O(1)** time (average). #[track_caller] pub fn swap_indices(&mut self, a: usize, b: usize) { self.inner.swap_indices(a, b) } } /// Access [`OrderMap`] values corresponding to a key. /// /// # Examples /// /// ``` /// use ordermap::OrderMap; /// /// let mut map = OrderMap::new(); /// for word in "Lorem ipsum dolor sit amet".split_whitespace() { /// map.insert(word.to_lowercase(), word.to_uppercase()); /// } /// assert_eq!(map["lorem"], "LOREM"); /// assert_eq!(map["ipsum"], "IPSUM"); /// ``` /// /// ```should_panic /// use ordermap::OrderMap; /// /// let mut map = OrderMap::new(); /// map.insert("foo", 1); /// println!("{:?}", map["bar"]); // panics! /// ``` impl Index<&Q> for OrderMap where Q: Hash + Equivalent, S: BuildHasher, { type Output = V; /// Returns a reference to the value corresponding to the supplied `key`. /// /// ***Panics*** if `key` is not present in the map. fn index(&self, key: &Q) -> &V { self.get(key).expect("no entry found for key") } } /// Access [`OrderMap`] values corresponding to a key. /// /// Mutable indexing allows changing / updating values of key-value /// pairs that are already present. /// /// You can **not** insert new pairs with index syntax, use `.insert()`. /// /// # Examples /// /// ``` /// use ordermap::OrderMap; /// /// let mut map = OrderMap::new(); /// for word in "Lorem ipsum dolor sit amet".split_whitespace() { /// map.insert(word.to_lowercase(), word.to_string()); /// } /// let lorem = &mut map["lorem"]; /// assert_eq!(lorem, "Lorem"); /// lorem.retain(char::is_lowercase); /// assert_eq!(map["lorem"], "orem"); /// ``` /// /// ```should_panic /// use ordermap::OrderMap; /// /// let mut map = OrderMap::new(); /// map.insert("foo", 1); /// map["bar"] = 1; // panics! /// ``` impl IndexMut<&Q> for OrderMap where Q: Hash + Equivalent, S: BuildHasher, { /// Returns a mutable reference to the value corresponding to the supplied `key`. /// /// ***Panics*** if `key` is not present in the map. fn index_mut(&mut self, key: &Q) -> &mut V { self.get_mut(key).expect("no entry found for key") } } /// Access [`OrderMap`] values at indexed positions. /// /// See [`Index for Keys`][keys] to access a map's keys instead. /// /// [keys]: Keys#impl-Index-for-Keys<'a,+K,+V> /// /// # Examples /// /// ``` /// use ordermap::OrderMap; /// /// let mut map = OrderMap::new(); /// for word in "Lorem ipsum dolor sit amet".split_whitespace() { /// map.insert(word.to_lowercase(), word.to_uppercase()); /// } /// assert_eq!(map[0], "LOREM"); /// assert_eq!(map[1], "IPSUM"); /// map.reverse(); /// assert_eq!(map[0], "AMET"); /// assert_eq!(map[1], "SIT"); /// map.sort_keys(); /// assert_eq!(map[0], "AMET"); /// assert_eq!(map[1], "DOLOR"); /// ``` /// /// ```should_panic /// use ordermap::OrderMap; /// /// let mut map = OrderMap::new(); /// map.insert("foo", 1); /// println!("{:?}", map[10]); // panics! /// ``` impl Index for OrderMap { type Output = V; /// Returns a reference to the value at the supplied `index`. /// /// ***Panics*** if `index` is out of bounds. fn index(&self, index: usize) -> &V { if let Some((_, value)) = self.get_index(index) { value } else { panic!( "index out of bounds: the len is {len} but the index is {index}", len = self.len() ); } } } /// Access [`OrderMap`] values at indexed positions. /// /// Mutable indexing allows changing / updating indexed values /// that are already present. /// /// You can **not** insert new values with index syntax -- use [`.insert()`][OrderMap::insert]. /// /// # Examples /// /// ``` /// use ordermap::OrderMap; /// /// let mut map = OrderMap::new(); /// for word in "Lorem ipsum dolor sit amet".split_whitespace() { /// map.insert(word.to_lowercase(), word.to_string()); /// } /// let lorem = &mut map[0]; /// assert_eq!(lorem, "Lorem"); /// lorem.retain(char::is_lowercase); /// assert_eq!(map["lorem"], "orem"); /// ``` /// /// ```should_panic /// use ordermap::OrderMap; /// /// let mut map = OrderMap::new(); /// map.insert("foo", 1); /// map[10] = 1; // panics! /// ``` impl IndexMut for OrderMap { /// Returns a mutable reference to the value at the supplied `index`. /// /// ***Panics*** if `index` is out of bounds. fn index_mut(&mut self, index: usize) -> &mut V { let len: usize = self.len(); if let Some((_, value)) = self.get_index_mut(index) { value } else { panic!("index out of bounds: the len is {len} but the index is {index}"); } } } impl FromIterator<(K, V)> for OrderMap where K: Hash + Eq, S: BuildHasher + Default, { /// Create an `OrderMap` from the sequence of key-value pairs in the /// iterable. /// /// `from_iter` uses the same logic as `extend`. See /// [`extend`][OrderMap::extend] for more details. fn from_iter>(iterable: I) -> Self { Self { inner: IndexMap::from_iter(iterable), } } } #[cfg(feature = "std")] #[cfg_attr(docsrs, doc(cfg(feature = "std")))] impl From<[(K, V); N]> for OrderMap where K: Hash + Eq, { /// # Examples /// /// ``` /// use ordermap::OrderMap; /// /// let map1 = OrderMap::from([(1, 2), (3, 4)]); /// let map2: OrderMap<_, _> = [(1, 2), (3, 4)].into(); /// assert_eq!(map1, map2); /// ``` fn from(arr: [(K, V); N]) -> Self { Self::from_iter(arr) } } impl Extend<(K, V)> for OrderMap where K: Hash + Eq, S: BuildHasher, { /// Extend the map with all key-value pairs in the iterable. /// /// This is equivalent to calling [`insert`][OrderMap::insert] for each of /// them in order, which means that for keys that already existed /// in the map, their value is updated but it keeps the existing order. /// /// New keys are inserted in the order they appear in the sequence. If /// equivalents of a key occur more than once, the last corresponding value /// prevails. fn extend>(&mut self, iterable: I) { self.inner.extend(iterable); } } impl<'a, K, V, S> Extend<(&'a K, &'a V)> for OrderMap where K: Hash + Eq + Copy, V: Copy, S: BuildHasher, { /// Extend the map with all key-value pairs in the iterable. /// /// See the first extend method for more details. fn extend>(&mut self, iterable: I) { self.inner.extend(iterable); } } impl Default for OrderMap where S: Default, { /// Return an empty [`OrderMap`] fn default() -> Self { Self::with_capacity_and_hasher(0, S::default()) } } impl PartialEq> for OrderMap where K: PartialEq, V: PartialEq, { fn eq(&self, other: &OrderMap) -> bool { self.len() == other.len() && self.iter().eq(other) } } impl Eq for OrderMap where K: Eq, V: Eq, { } impl PartialOrd> for OrderMap where K: PartialOrd, V: PartialOrd, { fn partial_cmp(&self, other: &OrderMap) -> Option { self.iter().partial_cmp(other) } } impl Ord for OrderMap where K: Ord, V: Ord, { fn cmp(&self, other: &Self) -> Ordering { self.iter().cmp(other) } } impl Hash for OrderMap where K: Hash, V: Hash, { fn hash(&self, state: &mut H) { self.len().hash(state); for (key, value) in self { key.hash(state); value.hash(state); } } } ordermap-1.1.0/src/serde.rs000064400000000000000000000042001046102023000136670ustar 00000000000000#![cfg_attr(docsrs, doc(cfg(feature = "serde")))] use crate::{OrderMap, OrderSet}; use core::hash::{BuildHasher, Hash}; use serde_core::de::value::{MapDeserializer, SeqDeserializer}; use serde_core::de::{Deserialize, Deserializer, Error, IntoDeserializer}; use serde_core::ser::{Serialize, Serializer}; impl Serialize for OrderMap where K: Serialize, V: Serialize, { fn serialize(&self, serializer: T) -> Result where T: Serializer, { self.inner.serialize(serializer) } } impl<'de, K, V, S> Deserialize<'de> for OrderMap where K: Deserialize<'de> + Eq + Hash, V: Deserialize<'de>, S: Default + BuildHasher, { fn deserialize(deserializer: D) -> Result where D: Deserializer<'de>, { Ok(Self { inner: <_>::deserialize(deserializer)?, }) } } impl<'de, K, V, S, E> IntoDeserializer<'de, E> for OrderMap where K: IntoDeserializer<'de, E> + Eq + Hash, V: IntoDeserializer<'de, E>, S: BuildHasher, E: Error, { type Deserializer = MapDeserializer<'de, ::IntoIter, E>; fn into_deserializer(self) -> Self::Deserializer { self.inner.into_deserializer() } } impl Serialize for OrderSet where T: Serialize, { fn serialize(&self, serializer: Se) -> Result where Se: Serializer, { self.inner.serialize(serializer) } } impl<'de, T, S> Deserialize<'de> for OrderSet where T: Deserialize<'de> + Eq + Hash, S: Default + BuildHasher, { fn deserialize(deserializer: D) -> Result where D: Deserializer<'de>, { Ok(Self { inner: <_>::deserialize(deserializer)?, }) } } impl<'de, T, S, E> IntoDeserializer<'de, E> for OrderSet where T: IntoDeserializer<'de, E> + Eq + Hash, S: BuildHasher, E: Error, { type Deserializer = SeqDeserializer<::IntoIter, E>; fn into_deserializer(self) -> Self::Deserializer { self.inner.into_deserializer() } } ordermap-1.1.0/src/set/iter.rs000064400000000000000000000006531046102023000143330ustar 00000000000000use super::OrderSet; use indexmap::set::{IntoIter, Iter}; impl<'a, T, S> IntoIterator for &'a OrderSet { type Item = &'a T; type IntoIter = Iter<'a, T>; fn into_iter(self) -> Self::IntoIter { self.inner.iter() } } impl IntoIterator for OrderSet { type Item = T; type IntoIter = IntoIter; fn into_iter(self) -> Self::IntoIter { self.inner.into_iter() } } ordermap-1.1.0/src/set/mutable.rs000064400000000000000000000044571046102023000150270ustar 00000000000000use super::{Equivalent, OrderSet}; use core::hash::{BuildHasher, Hash}; use indexmap::set::MutableValues as _; /// Opt-in mutable access to [`OrderSet`] values. /// /// These methods expose `&mut T`, mutable references to the value as it is stored /// in the set. /// You are allowed to modify the values in the set **if the modification /// does not change the value's hash and equality**. /// /// If values are modified erroneously, you can no longer look them up. /// This is sound (memory safe) but a logical error hazard (just like /// implementing `PartialEq`, `Eq`, or `Hash` incorrectly would be). /// /// `use` this trait to enable its methods for `OrderSet`. /// /// This trait is sealed and cannot be implemented for types outside this crate. #[expect(private_bounds)] pub trait MutableValues: Sealed { type Value; /// Return item index and mutable reference to the value /// /// Computes in **O(1)** time (average). fn get_full_mut2(&mut self, value: &Q) -> Option<(usize, &mut Self::Value)> where Q: ?Sized + Hash + Equivalent; /// Return mutable reference to the value at an index. /// /// Valid indices are `0 <= index < self.len()`. /// /// Computes in **O(1)** time. fn get_index_mut2(&mut self, index: usize) -> Option<&mut Self::Value>; /// Scan through each value in the set and keep those where the /// closure `keep` returns `true`. /// /// The values are visited in order, and remaining values keep their order. /// /// Computes in **O(n)** time (average). fn retain2(&mut self, keep: F) where F: FnMut(&mut Self::Value) -> bool; } /// Opt-in mutable access to [`OrderSet`] values. /// /// See [`MutableValues`] for more information. impl MutableValues for OrderSet where S: BuildHasher, { type Value = T; fn get_full_mut2(&mut self, value: &Q) -> Option<(usize, &mut T)> where Q: ?Sized + Hash + Equivalent, { self.inner.get_full_mut2(value) } fn get_index_mut2(&mut self, index: usize) -> Option<&mut T> { self.inner.get_index_mut2(index) } fn retain2(&mut self, keep: F) where F: FnMut(&mut T) -> bool, { self.inner.retain2(keep); } } trait Sealed {} impl Sealed for OrderSet {} ordermap-1.1.0/src/set/rayon.rs000064400000000000000000000322631046102023000145220ustar 00000000000000//! Parallel iterator types for [`OrderSet`] with [rayon]. //! //! You will rarely need to interact with this module directly unless you need to name one of the //! iterator types. pub use indexmap::set::rayon::{ IntoParIter, ParDifference, ParDrain, ParIntersection, ParIter, ParSymmetricDifference, ParUnion, }; use super::OrderSet; use core::cmp::Ordering; use core::hash::{BuildHasher, Hash}; use core::ops::RangeBounds; use rayon::prelude::*; impl IntoParallelIterator for OrderSet where T: Send, { type Item = T; type Iter = IntoParIter; fn into_par_iter(self) -> Self::Iter { self.inner.into_par_iter() } } impl<'a, T, S> IntoParallelIterator for &'a OrderSet where T: Sync, { type Item = &'a T; type Iter = ParIter<'a, T>; fn into_par_iter(self) -> Self::Iter { self.inner.par_iter() } } impl<'a, T, S> ParallelDrainRange for &'a mut OrderSet where T: Send, { type Item = T; type Iter = ParDrain<'a, T>; fn par_drain>(self, range: R) -> Self::Iter { self.inner.par_drain(range) } } impl OrderSet where T: PartialEq + Sync, { /// Returns `true` if `self` contains all of the same values as `other`, /// in the same indexed order, determined in parallel. pub fn par_eq(&self, other: &OrderSet) -> bool where S2: BuildHasher + Sync, { self.len() == other.len() && self.par_iter().eq(other) } } /// Parallel iterator methods and other parallel methods. /// /// The following methods **require crate feature `"rayon"`**. /// /// See also the `IntoParallelIterator` implementations. impl OrderSet where T: Hash + Eq + Sync, S: BuildHasher + Sync, { /// Return a parallel iterator over the values that are in `self` but not `other`. /// /// While parallel iterators can process items in any order, their relative order /// in the `self` set is still preserved for operations like `reduce` and `collect`. pub fn par_difference<'a, S2>( &'a self, other: &'a OrderSet, ) -> ParDifference<'a, T, S, S2> where S2: BuildHasher + Sync, { self.inner.par_difference(&other.inner) } /// Return a parallel iterator over the values that are in `self` or `other`, /// but not in both. /// /// While parallel iterators can process items in any order, their relative order /// in the sets is still preserved for operations like `reduce` and `collect`. /// Values from `self` are produced in their original order, followed by /// values from `other` in their original order. pub fn par_symmetric_difference<'a, S2>( &'a self, other: &'a OrderSet, ) -> ParSymmetricDifference<'a, T, S, S2> where S2: BuildHasher + Sync, { self.inner.par_symmetric_difference(&other.inner) } /// Return a parallel iterator over the values that are in both `self` and `other`. /// /// While parallel iterators can process items in any order, their relative order /// in the `self` set is still preserved for operations like `reduce` and `collect`. pub fn par_intersection<'a, S2>( &'a self, other: &'a OrderSet, ) -> ParIntersection<'a, T, S, S2> where S2: BuildHasher + Sync, { self.inner.par_intersection(&other.inner) } /// Return a parallel iterator over all values that are in `self` or `other`. /// /// While parallel iterators can process items in any order, their relative order /// in the sets is still preserved for operations like `reduce` and `collect`. /// Values from `self` are produced in their original order, followed by /// values that are unique to `other` in their original order. pub fn par_union<'a, S2>(&'a self, other: &'a OrderSet) -> ParUnion<'a, T, S, S2> where S2: BuildHasher + Sync, { self.inner.par_union(&other.inner) } /// Returns `true` if `self` has no elements in common with `other`, /// determined in parallel. pub fn par_is_disjoint(&self, other: &OrderSet) -> bool where S2: BuildHasher + Sync, { self.inner.par_is_disjoint(&other.inner) } /// Returns `true` if all elements of `other` are contained in `self`, /// determined in parallel. pub fn par_is_superset(&self, other: &OrderSet) -> bool where S2: BuildHasher + Sync, { self.inner.par_is_superset(&other.inner) } /// Returns `true` if all elements of `self` are contained in `other`, /// determined in parallel. pub fn par_is_subset(&self, other: &OrderSet) -> bool where S2: BuildHasher + Sync, { self.inner.par_is_subset(&other.inner) } /// Returns `true` if `self` contains all of the same values as `other`, /// regardless of each set's indexed order, determined in parallel. pub fn par_set_eq(&self, other: &OrderSet) -> bool where S2: BuildHasher + Sync, { self.inner.par_eq(&other.inner) } } /// Parallel sorting methods. /// /// The following methods **require crate feature `"rayon"`**. impl OrderSet where T: Send, { /// Sort the set's values in parallel by their default ordering. pub fn par_sort(&mut self) where T: Ord, { self.inner.par_sort(); } /// Sort the set's values in place and in parallel, using the comparison function `cmp`. pub fn par_sort_by(&mut self, cmp: F) where F: Fn(&T, &T) -> Ordering + Sync, { self.inner.par_sort_by(cmp); } /// Sort the values of the set in parallel and return a by-value parallel iterator of /// the values with the result. pub fn par_sorted_by(self, cmp: F) -> IntoParIter where F: Fn(&T, &T) -> Ordering + Sync, { self.inner.par_sorted_by(cmp) } /// Sort the set's values in place and in parallel, using a key extraction function. pub fn par_sort_by_key(&mut self, sort_key: F) where K: Ord, F: Fn(&T) -> K + Sync, { self.inner.par_sort_by_key(sort_key) } /// Sort the set's values in parallel by their default ordering. pub fn par_sort_unstable(&mut self) where T: Ord, { self.inner.par_sort_unstable(); } /// Sort the set's values in place and in parallel, using the comparison function `cmp`. pub fn par_sort_unstable_by(&mut self, cmp: F) where F: Fn(&T, &T) -> Ordering + Sync, { self.inner.par_sort_unstable_by(cmp); } /// Sort the values of the set in parallel and return a by-value parallel iterator of /// the values with the result. pub fn par_sorted_unstable_by(self, cmp: F) -> IntoParIter where F: Fn(&T, &T) -> Ordering + Sync, { self.inner.par_sorted_unstable_by(cmp) } /// Sort the set's values in place and in parallel, using a key extraction function. pub fn par_sort_unstable_by_key(&mut self, sort_key: F) where K: Ord, F: Fn(&T) -> K + Sync, { self.inner.par_sort_unstable_by_key(sort_key) } /// Sort the set's values in place and in parallel, using a key extraction function. pub fn par_sort_by_cached_key(&mut self, sort_key: F) where K: Ord + Send, F: Fn(&T) -> K + Sync, { self.inner.par_sort_by_cached_key(sort_key); } } impl FromParallelIterator for OrderSet where T: Eq + Hash + Send, S: BuildHasher + Default + Send, { fn from_par_iter(iter: I) -> Self where I: IntoParallelIterator, { Self { inner: <_>::from_par_iter(iter), } } } impl ParallelExtend for OrderSet where T: Eq + Hash + Send, S: BuildHasher + Send, { fn par_extend(&mut self, iter: I) where I: IntoParallelIterator, { self.inner.par_extend(iter); } } impl<'a, T: 'a, S> ParallelExtend<&'a T> for OrderSet where T: Copy + Eq + Hash + Send + Sync, S: BuildHasher + Send, { fn par_extend(&mut self, iter: I) where I: IntoParallelIterator, { self.inner.par_extend(iter); } } #[cfg(test)] mod tests { use super::*; use std::vec::Vec; #[test] fn insert_order() { let insert = [0, 4, 2, 12, 8, 7, 11, 5, 3, 17, 19, 22, 23]; let mut set = OrderSet::new(); for &elt in &insert { set.insert(elt); } assert_eq!(set.par_iter().count(), set.len()); assert_eq!(set.par_iter().count(), insert.len()); insert.par_iter().zip(&set).for_each(|(a, b)| { assert_eq!(a, b); }); (0..insert.len()) .into_par_iter() .zip(&set) .for_each(|(i, v)| { assert_eq!(set.get_index(i).unwrap(), v); }); } #[test] fn partial_eq_and_eq() { let mut set_a = OrderSet::new(); set_a.insert(1); set_a.insert(2); let mut set_b = set_a.clone(); assert!(set_a.par_eq(&set_b)); set_b.swap_remove(&1); assert!(!set_a.par_eq(&set_b)); set_b.insert(3); assert!(!set_a.par_eq(&set_b)); let set_c: OrderSet<_> = set_b.into_par_iter().collect(); assert!(!set_a.par_eq(&set_c)); assert!(!set_c.par_eq(&set_a)); } #[test] fn extend() { let mut set = OrderSet::new(); set.par_extend(vec![&1, &2, &3, &4]); set.par_extend(vec![5, 6]); assert_eq!( set.into_par_iter().collect::>(), vec![1, 2, 3, 4, 5, 6] ); } #[test] fn comparisons() { let set_a: OrderSet<_> = (0..3).collect(); let set_b: OrderSet<_> = (3..6).collect(); let set_c: OrderSet<_> = (0..6).collect(); let set_d: OrderSet<_> = (3..9).collect(); assert!(!set_a.par_is_disjoint(&set_a)); assert!(set_a.par_is_subset(&set_a)); assert!(set_a.par_is_superset(&set_a)); assert!(set_a.par_is_disjoint(&set_b)); assert!(set_b.par_is_disjoint(&set_a)); assert!(!set_a.par_is_subset(&set_b)); assert!(!set_b.par_is_subset(&set_a)); assert!(!set_a.par_is_superset(&set_b)); assert!(!set_b.par_is_superset(&set_a)); assert!(!set_a.par_is_disjoint(&set_c)); assert!(!set_c.par_is_disjoint(&set_a)); assert!(set_a.par_is_subset(&set_c)); assert!(!set_c.par_is_subset(&set_a)); assert!(!set_a.par_is_superset(&set_c)); assert!(set_c.par_is_superset(&set_a)); assert!(!set_c.par_is_disjoint(&set_d)); assert!(!set_d.par_is_disjoint(&set_c)); assert!(!set_c.par_is_subset(&set_d)); assert!(!set_d.par_is_subset(&set_c)); assert!(!set_c.par_is_superset(&set_d)); assert!(!set_d.par_is_superset(&set_c)); } #[test] fn iter_comparisons() { use std::iter::empty; fn check<'a, I1, I2>(iter1: I1, iter2: I2) where I1: ParallelIterator, I2: Iterator, { let v1: Vec<_> = iter1.copied().collect(); let v2: Vec<_> = iter2.collect(); assert_eq!(v1, v2); } let set_a: OrderSet<_> = (0..3).collect(); let set_b: OrderSet<_> = (3..6).collect(); let set_c: OrderSet<_> = (0..6).collect(); let set_d: OrderSet<_> = (3..9).rev().collect(); check(set_a.par_difference(&set_a), empty()); check(set_a.par_symmetric_difference(&set_a), empty()); check(set_a.par_intersection(&set_a), 0..3); check(set_a.par_union(&set_a), 0..3); check(set_a.par_difference(&set_b), 0..3); check(set_b.par_difference(&set_a), 3..6); check(set_a.par_symmetric_difference(&set_b), 0..6); check(set_b.par_symmetric_difference(&set_a), (3..6).chain(0..3)); check(set_a.par_intersection(&set_b), empty()); check(set_b.par_intersection(&set_a), empty()); check(set_a.par_union(&set_b), 0..6); check(set_b.par_union(&set_a), (3..6).chain(0..3)); check(set_a.par_difference(&set_c), empty()); check(set_c.par_difference(&set_a), 3..6); check(set_a.par_symmetric_difference(&set_c), 3..6); check(set_c.par_symmetric_difference(&set_a), 3..6); check(set_a.par_intersection(&set_c), 0..3); check(set_c.par_intersection(&set_a), 0..3); check(set_a.par_union(&set_c), 0..6); check(set_c.par_union(&set_a), 0..6); check(set_c.par_difference(&set_d), 0..3); check(set_d.par_difference(&set_c), (6..9).rev()); check( set_c.par_symmetric_difference(&set_d), (0..3).chain((6..9).rev()), ); check( set_d.par_symmetric_difference(&set_c), (6..9).rev().chain(0..3), ); check(set_c.par_intersection(&set_d), 3..6); check(set_d.par_intersection(&set_c), (3..6).rev()); check(set_c.par_union(&set_d), (0..6).chain((6..9).rev())); check(set_d.par_union(&set_c), (3..9).rev().chain(0..3)); } } ordermap-1.1.0/src/set/slice.rs000064400000000000000000000041501046102023000144630ustar 00000000000000use super::OrderSet; use core::ops::{self, Bound, Index}; use indexmap::set::Slice; // We can't have `impl> Index` because that conflicts with `Index`. // Instead, we repeat the implementations for all the core range types. macro_rules! impl_index { ($($range:ty),*) => {$( impl Index<$range> for OrderSet { type Output = Slice; fn index(&self, range: $range) -> &Self::Output { &self.inner[range] } } )*} } impl_index!( ops::Range, ops::RangeFrom, ops::RangeFull, ops::RangeInclusive, ops::RangeTo, ops::RangeToInclusive, (Bound, Bound) ); #[cfg(test)] mod tests { use super::*; use alloc::vec::Vec; #[test] fn slice_index() { fn check(vec_slice: &[i32], set_slice: &Slice, sub_slice: &Slice) { assert_eq!(set_slice as *const _, sub_slice as *const _); itertools::assert_equal(vec_slice, set_slice); } let vec: Vec = (0..10).map(|i| i * i).collect(); let set: OrderSet = vec.iter().cloned().collect(); let slice = set.as_slice(); // RangeFull check(&vec[..], &set[..], &slice[..]); for i in 0usize..10 { // Index assert_eq!(vec[i], set[i]); assert_eq!(vec[i], slice[i]); // RangeFrom check(&vec[i..], &set[i..], &slice[i..]); // RangeTo check(&vec[..i], &set[..i], &slice[..i]); // RangeToInclusive check(&vec[..=i], &set[..=i], &slice[..=i]); // (Bound, Bound) let bounds = (Bound::Excluded(i), Bound::Unbounded); check(&vec[i + 1..], &set[bounds], &slice[bounds]); for j in i..=10 { // Range check(&vec[i..j], &set[i..j], &slice[i..j]); } for j in i..10 { // RangeInclusive check(&vec[i..=j], &set[i..=j], &slice[i..=j]); } } } } ordermap-1.1.0/src/set/tests.rs000064400000000000000000000737411046102023000145420ustar 00000000000000use super::*; use std::string::String; use std::vec::Vec; #[test] fn it_works() { let mut set = OrderSet::new(); assert_eq!(set.is_empty(), true); set.insert(1); set.insert(1); assert_eq!(set.len(), 1); assert!(set.get(&1).is_some()); assert_eq!(set.is_empty(), false); } #[test] fn new() { let set = OrderSet::::new(); println!("{:?}", set); assert_eq!(set.capacity(), 0); assert_eq!(set.len(), 0); assert_eq!(set.is_empty(), true); } #[test] fn insert() { let insert = [0, 4, 2, 12, 8, 7, 11, 5]; let not_present = [1, 3, 6, 9, 10]; let mut set = OrderSet::with_capacity(insert.len()); for (i, &elt) in insert.iter().enumerate() { assert_eq!(set.len(), i); set.insert(elt); assert_eq!(set.len(), i + 1); assert_eq!(set.get(&elt), Some(&elt)); } println!("{:?}", set); for &elt in ¬_present { assert!(set.get(&elt).is_none()); } } #[test] fn insert_full() { let insert = vec![9, 2, 7, 1, 4, 6, 13]; let present = vec![1, 6, 2]; let mut set = OrderSet::with_capacity(insert.len()); for (i, &elt) in insert.iter().enumerate() { assert_eq!(set.len(), i); let (index, success) = set.insert_full(elt); assert!(success); assert_eq!(Some(index), set.get_full(&elt).map(|x| x.0)); assert_eq!(set.len(), i + 1); } let len = set.len(); for &elt in &present { let (index, success) = set.insert_full(elt); assert!(!success); assert_eq!(Some(index), set.get_full(&elt).map(|x| x.0)); assert_eq!(set.len(), len); } } #[test] fn insert_2() { let mut set = OrderSet::with_capacity(16); let mut values = vec![]; values.extend(0..16); values.extend(if cfg!(miri) { 32..64 } else { 128..267 }); for &i in &values { let old_set = set.clone(); set.insert(i); for value in old_set.iter() { if set.get(value).is_none() { println!("old_set: {:?}", old_set); println!("set: {:?}", set); panic!("did not find {} in set", value); } } } for &i in &values { assert!(set.get(&i).is_some(), "did not find {}", i); } } #[test] fn insert_dup() { let mut elements = vec![0, 2, 4, 6, 8]; let mut set: OrderSet = elements.drain(..).collect(); { let (i, v) = set.get_full(&0).unwrap(); assert_eq!(set.len(), 5); assert_eq!(i, 0); assert_eq!(*v, 0); } { let inserted = set.insert(0); let (i, v) = set.get_full(&0).unwrap(); assert_eq!(set.len(), 5); assert_eq!(inserted, false); assert_eq!(i, 0); assert_eq!(*v, 0); } } #[test] fn insert_order() { let insert = [0, 4, 2, 12, 8, 7, 11, 5, 3, 17, 19, 22, 23]; let mut set = OrderSet::new(); for &elt in &insert { set.insert(elt); } assert_eq!(set.iter().count(), set.len()); assert_eq!(set.iter().count(), insert.len()); for (a, b) in insert.iter().zip(set.iter()) { assert_eq!(a, b); } for (i, v) in (0..insert.len()).zip(set.iter()) { assert_eq!(set.get_index(i).unwrap(), v); } } #[test] fn shift_insert() { let insert = [0, 4, 2, 12, 8, 7, 11, 5, 3, 17, 19, 22, 23]; let mut set = OrderSet::new(); for &elt in &insert { set.shift_insert(0, elt); } assert_eq!(set.iter().count(), set.len()); assert_eq!(set.iter().count(), insert.len()); for (a, b) in insert.iter().rev().zip(set.iter()) { assert_eq!(a, b); } for (i, v) in (0..insert.len()).zip(set.iter()) { assert_eq!(set.get_index(i).unwrap(), v); } // "insert" that moves an existing entry set.shift_insert(0, insert[0]); assert_eq!(set.iter().count(), insert.len()); assert_eq!(insert[0], set[0]); for (a, b) in insert[1..].iter().rev().zip(set.iter().skip(1)) { assert_eq!(a, b); } } #[test] fn replace() { let replace = [0, 4, 2, 12, 8, 7, 11, 5]; let not_present = [1, 3, 6, 9, 10]; let mut set = OrderSet::with_capacity(replace.len()); for (i, &elt) in replace.iter().enumerate() { assert_eq!(set.len(), i); set.replace(elt); assert_eq!(set.len(), i + 1); assert_eq!(set.get(&elt), Some(&elt)); } println!("{:?}", set); for &elt in ¬_present { assert!(set.get(&elt).is_none()); } } #[test] fn replace_full() { let replace = vec![9, 2, 7, 1, 4, 6, 13]; let present = vec![1, 6, 2]; let mut set = OrderSet::with_capacity(replace.len()); for (i, &elt) in replace.iter().enumerate() { assert_eq!(set.len(), i); let (index, replaced) = set.replace_full(elt); assert!(replaced.is_none()); assert_eq!(Some(index), set.get_full(&elt).map(|x| x.0)); assert_eq!(set.len(), i + 1); } let len = set.len(); for &elt in &present { let (index, replaced) = set.replace_full(elt); assert_eq!(Some(elt), replaced); assert_eq!(Some(index), set.get_full(&elt).map(|x| x.0)); assert_eq!(set.len(), len); } } #[test] fn replace_2() { let mut set = OrderSet::with_capacity(16); let mut values = vec![]; values.extend(0..16); values.extend(if cfg!(miri) { 32..64 } else { 128..267 }); for &i in &values { let old_set = set.clone(); set.replace(i); for value in old_set.iter() { if set.get(value).is_none() { println!("old_set: {:?}", old_set); println!("set: {:?}", set); panic!("did not find {} in set", value); } } } for &i in &values { assert!(set.get(&i).is_some(), "did not find {}", i); } } #[test] fn replace_dup() { let mut elements = vec![0, 2, 4, 6, 8]; let mut set: OrderSet = elements.drain(..).collect(); { let (i, v) = set.get_full(&0).unwrap(); assert_eq!(set.len(), 5); assert_eq!(i, 0); assert_eq!(*v, 0); } { let replaced = set.replace(0); let (i, v) = set.get_full(&0).unwrap(); assert_eq!(set.len(), 5); assert_eq!(replaced, Some(0)); assert_eq!(i, 0); assert_eq!(*v, 0); } } #[test] fn replace_order() { let replace = [0, 4, 2, 12, 8, 7, 11, 5, 3, 17, 19, 22, 23]; let mut set = OrderSet::new(); for &elt in &replace { set.replace(elt); } assert_eq!(set.iter().count(), set.len()); assert_eq!(set.iter().count(), replace.len()); for (a, b) in replace.iter().zip(set.iter()) { assert_eq!(a, b); } for (i, v) in (0..replace.len()).zip(set.iter()) { assert_eq!(set.get_index(i).unwrap(), v); } } #[test] fn replace_change() { // Check pointers to make sure it really changes let mut set = orderset!(vec![42]); let old_ptr = set[0].as_ptr(); let new = set[0].clone(); let new_ptr = new.as_ptr(); assert_ne!(old_ptr, new_ptr); let replaced = set.replace(new).unwrap(); assert_eq!(replaced.as_ptr(), old_ptr); } #[test] fn grow() { let insert = [0, 4, 2, 12, 8, 7, 11]; let not_present = [1, 3, 6, 9, 10]; let mut set = OrderSet::with_capacity(insert.len()); for (i, &elt) in insert.iter().enumerate() { assert_eq!(set.len(), i); set.insert(elt); assert_eq!(set.len(), i + 1); assert_eq!(set.get(&elt), Some(&elt)); } println!("{:?}", set); for &elt in &insert { set.insert(elt * 10); } for &elt in &insert { set.insert(elt * 100); } for (i, &elt) in insert.iter().cycle().enumerate().take(100) { set.insert(elt * 100 + i as i32); } println!("{:?}", set); for &elt in ¬_present { assert!(set.get(&elt).is_none()); } } #[test] fn reserve() { let mut set = OrderSet::::new(); assert_eq!(set.capacity(), 0); set.reserve(100); let capacity = set.capacity(); assert!(capacity >= 100); for i in 0..capacity { assert_eq!(set.len(), i); set.insert(i); assert_eq!(set.len(), i + 1); assert_eq!(set.capacity(), capacity); assert_eq!(set.get(&i), Some(&i)); } set.insert(capacity); assert_eq!(set.len(), capacity + 1); assert!(set.capacity() > capacity); assert_eq!(set.get(&capacity), Some(&capacity)); } #[test] fn try_reserve() { let mut set = OrderSet::::new(); assert_eq!(set.capacity(), 0); assert_eq!(set.try_reserve(100), Ok(())); assert!(set.capacity() >= 100); assert!(set.try_reserve(usize::MAX).is_err()); } #[test] fn shrink_to_fit() { let mut set = OrderSet::::new(); assert_eq!(set.capacity(), 0); for i in 0..100 { assert_eq!(set.len(), i); set.insert(i); assert_eq!(set.len(), i + 1); assert!(set.capacity() >= i + 1); assert_eq!(set.get(&i), Some(&i)); set.shrink_to_fit(); assert_eq!(set.len(), i + 1); assert_eq!(set.capacity(), i + 1); assert_eq!(set.get(&i), Some(&i)); } } #[test] fn remove() { let insert = [0, 4, 2, 12, 8, 7, 11, 5, 3, 17, 19, 22, 23]; let mut set = OrderSet::new(); for &elt in &insert { set.insert(elt); } assert_eq!(set.iter().count(), set.len()); assert_eq!(set.iter().count(), insert.len()); for (a, b) in insert.iter().zip(set.iter()) { assert_eq!(a, b); } let remove_fail = [99, 77]; let remove = [4, 12, 8, 7]; for &value in &remove_fail { assert!(set.swap_remove_full(&value).is_none()); } println!("{:?}", set); for &value in &remove { //println!("{:?}", set); let index = set.get_full(&value).unwrap().0; assert_eq!(set.swap_remove_full(&value), Some((index, value))); } println!("{:?}", set); for value in &insert { assert_eq!(set.get(value).is_some(), !remove.contains(value)); } assert_eq!(set.len(), insert.len() - remove.len()); assert_eq!(set.iter().count(), insert.len() - remove.len()); } #[test] fn swap_remove_index() { let insert = [0, 4, 2, 12, 8, 7, 11, 5, 3, 17, 19, 22, 23]; let mut set = OrderSet::new(); for &elt in &insert { set.insert(elt); } let mut vector = insert.to_vec(); let remove_sequence = &[3, 3, 10, 4, 5, 4, 3, 0, 1]; // check that the same swap remove sequence on vec and set // have the same result. for &rm in remove_sequence { let out_vec = vector.swap_remove(rm); let out_set = set.swap_remove_index(rm).unwrap(); assert_eq!(out_vec, out_set); } assert_eq!(vector.len(), set.len()); for (a, b) in vector.iter().zip(set.iter()) { assert_eq!(a, b); } } #[test] fn partial_eq_and_eq() { let mut set_a = OrderSet::new(); set_a.insert(1); set_a.insert(2); let mut set_b = set_a.clone(); assert_eq!(set_a, set_b); set_b.swap_remove(&1); assert_ne!(set_a, set_b); let set_c: OrderSet<_> = set_b.into_iter().collect(); assert_ne!(set_a, set_c); assert_ne!(set_c, set_a); } #[test] fn extend() { let mut set = OrderSet::new(); set.extend(vec![&1, &2, &3, &4]); set.extend(vec![5, 6]); assert_eq!(set.into_iter().collect::>(), vec![1, 2, 3, 4, 5, 6]); } #[test] fn comparisons() { let set_a: OrderSet<_> = (0..3).collect(); let set_b: OrderSet<_> = (3..6).collect(); let set_c: OrderSet<_> = (0..6).collect(); let set_d: OrderSet<_> = (3..9).collect(); assert!(!set_a.is_disjoint(&set_a)); assert!(set_a.is_subset(&set_a)); assert!(set_a.is_superset(&set_a)); assert!(set_a.is_disjoint(&set_b)); assert!(set_b.is_disjoint(&set_a)); assert!(!set_a.is_subset(&set_b)); assert!(!set_b.is_subset(&set_a)); assert!(!set_a.is_superset(&set_b)); assert!(!set_b.is_superset(&set_a)); assert!(!set_a.is_disjoint(&set_c)); assert!(!set_c.is_disjoint(&set_a)); assert!(set_a.is_subset(&set_c)); assert!(!set_c.is_subset(&set_a)); assert!(!set_a.is_superset(&set_c)); assert!(set_c.is_superset(&set_a)); assert!(!set_c.is_disjoint(&set_d)); assert!(!set_d.is_disjoint(&set_c)); assert!(!set_c.is_subset(&set_d)); assert!(!set_d.is_subset(&set_c)); assert!(!set_c.is_superset(&set_d)); assert!(!set_d.is_superset(&set_c)); } #[test] fn iter_comparisons() { use std::iter::empty; fn check<'a, I1, I2>(iter1: I1, iter2: I2) where I1: Iterator, I2: Iterator, { assert!(iter1.copied().eq(iter2)); } let set_a: OrderSet<_> = (0..3).collect(); let set_b: OrderSet<_> = (3..6).collect(); let set_c: OrderSet<_> = (0..6).collect(); let set_d: OrderSet<_> = (3..9).rev().collect(); check(set_a.difference(&set_a), empty()); check(set_a.symmetric_difference(&set_a), empty()); check(set_a.intersection(&set_a), 0..3); check(set_a.union(&set_a), 0..3); check(set_a.difference(&set_b), 0..3); check(set_b.difference(&set_a), 3..6); check(set_a.symmetric_difference(&set_b), 0..6); check(set_b.symmetric_difference(&set_a), (3..6).chain(0..3)); check(set_a.intersection(&set_b), empty()); check(set_b.intersection(&set_a), empty()); check(set_a.union(&set_b), 0..6); check(set_b.union(&set_a), (3..6).chain(0..3)); check(set_a.difference(&set_c), empty()); check(set_c.difference(&set_a), 3..6); check(set_a.symmetric_difference(&set_c), 3..6); check(set_c.symmetric_difference(&set_a), 3..6); check(set_a.intersection(&set_c), 0..3); check(set_c.intersection(&set_a), 0..3); check(set_a.union(&set_c), 0..6); check(set_c.union(&set_a), 0..6); check(set_c.difference(&set_d), 0..3); check(set_d.difference(&set_c), (6..9).rev()); check( set_c.symmetric_difference(&set_d), (0..3).chain((6..9).rev()), ); check(set_d.symmetric_difference(&set_c), (6..9).rev().chain(0..3)); check(set_c.intersection(&set_d), 3..6); check(set_d.intersection(&set_c), (3..6).rev()); check(set_c.union(&set_d), (0..6).chain((6..9).rev())); check(set_d.union(&set_c), (3..9).rev().chain(0..3)); } #[test] fn ops() { let empty = OrderSet::::new(); let set_a: OrderSet<_> = (0..3).collect(); let set_b: OrderSet<_> = (3..6).collect(); let set_c: OrderSet<_> = (0..6).collect(); let set_d: OrderSet<_> = (3..9).rev().collect(); #[allow(clippy::eq_op)] { assert_eq!(&set_a & &set_a, set_a); assert_eq!(&set_a | &set_a, set_a); assert_eq!(&set_a ^ &set_a, empty); assert_eq!(&set_a - &set_a, empty); } assert_eq!(&set_a & &set_b, empty); assert_eq!(&set_b & &set_a, empty); assert_eq!(&set_a | &set_b, set_c); assert_ne!(&set_b | &set_a, set_c); assert!((&set_b | &set_a).set_eq(&set_c)); assert_eq!(&set_a ^ &set_b, set_c); assert_ne!(&set_b ^ &set_a, set_c); assert!((&set_b ^ &set_a).set_eq(&set_c)); assert_eq!(&set_a - &set_b, set_a); assert_eq!(&set_b - &set_a, set_b); assert_eq!(&set_a & &set_c, set_a); assert_eq!(&set_c & &set_a, set_a); assert_eq!(&set_a | &set_c, set_c); assert_eq!(&set_c | &set_a, set_c); assert_eq!(&set_a ^ &set_c, set_b); assert_eq!(&set_c ^ &set_a, set_b); assert_eq!(&set_a - &set_c, empty); assert_eq!(&set_c - &set_a, set_b); assert_eq!(&set_c & &set_d, set_b); assert_ne!(&set_d & &set_c, set_b); assert!((&set_d & &set_c).set_eq(&set_b)); assert_ne!(&set_c | &set_d, &set_a | &set_d); assert!((&set_c | &set_d).set_eq(&(&set_a | &set_d))); assert_ne!(&set_d | &set_c, &set_a | &set_d); assert!((&set_d | &set_c).set_eq(&(&set_a | &set_d))); assert_eq!(&set_c ^ &set_d, &set_a | &(&set_d - &set_b)); assert_ne!(&set_d ^ &set_c, &set_a | &(&set_d - &set_b)); assert!((&set_d ^ &set_c).set_eq(&(&set_a | &(&set_d - &set_b)))); assert_eq!(&set_c - &set_d, set_a); assert_eq!(&set_d - &set_c, &set_d - &set_b); } #[test] #[cfg(feature = "std")] fn from_array() { let set1 = OrderSet::from([1, 2, 3, 4]); let set2: OrderSet<_> = [1, 2, 3, 4].into(); assert_eq!(set1, set2); } #[test] fn iter_default() { struct Item; fn assert_default() where T: Default + Iterator, { assert!(T::default().next().is_none()); } assert_default::>(); assert_default::>(); } #[test] #[allow(deprecated)] fn take() { let mut index_set: OrderSet = OrderSet::new(); index_set.insert(10); assert_eq!(index_set.len(), 1); let result = index_set.take(&10); assert_eq!(result, Some(10)); assert_eq!(index_set.len(), 0); let result = index_set.take(&20); assert_eq!(result, None); } #[test] fn swap_take() { let mut index_set: OrderSet = OrderSet::new(); index_set.insert(10); index_set.insert(20); index_set.insert(30); index_set.insert(40); assert_eq!(index_set.len(), 4); let result = index_set.swap_take(&20); assert_eq!(result, Some(20)); assert_eq!(index_set.len(), 3); assert_eq!(index_set.as_slice(), &[10, 40, 30]); let result = index_set.swap_take(&50); assert_eq!(result, None); } #[test] fn sort_unstable() { let mut index_set: OrderSet = OrderSet::new(); index_set.insert(30); index_set.insert(20); index_set.insert(10); index_set.sort_unstable(); assert_eq!(index_set.as_slice(), &[10, 20, 30]); } #[test] fn try_reserve_exact() { let mut index_set: OrderSet = OrderSet::new(); index_set.insert(10); index_set.insert(20); index_set.insert(30); index_set.shrink_to_fit(); assert_eq!(index_set.capacity(), 3); index_set.try_reserve_exact(2).unwrap(); assert_eq!(index_set.capacity(), 5); } #[test] fn shift_remove_full() { let mut set: OrderSet = OrderSet::new(); set.insert(10); set.insert(20); set.insert(30); set.insert(40); set.insert(50); let result = set.remove_full(&20); assert_eq!(result, Some((1, 20))); assert_eq!(set.len(), 4); assert_eq!(set.as_slice(), &[10, 30, 40, 50]); let result = set.remove_full(&50); assert_eq!(result, Some((3, 50))); assert_eq!(set.len(), 3); assert_eq!(set.as_slice(), &[10, 30, 40]); let result = set.remove_full(&60); assert_eq!(result, None); assert_eq!(set.len(), 3); assert_eq!(set.as_slice(), &[10, 30, 40]); } #[test] fn shift_remove_index() { let mut set: OrderSet = OrderSet::new(); set.insert(10); set.insert(20); set.insert(30); set.insert(40); set.insert(50); let result = set.remove_index(1); assert_eq!(result, Some(20)); assert_eq!(set.len(), 4); assert_eq!(set.as_slice(), &[10, 30, 40, 50]); let result = set.remove_index(1); assert_eq!(result, Some(30)); assert_eq!(set.len(), 3); assert_eq!(set.as_slice(), &[10, 40, 50]); let result = set.remove_index(3); assert_eq!(result, None); assert_eq!(set.len(), 3); assert_eq!(set.as_slice(), &[10, 40, 50]); } #[test] fn sort_unstable_by() { let mut set: OrderSet = OrderSet::from([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]); set.sort_unstable_by(|a, b| b.cmp(a)); assert_eq!(set.as_slice(), &[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]); } #[test] fn sort_by() { let mut set: OrderSet = OrderSet::new(); set.insert(3); set.insert(1); set.insert(2); set.sort_by(|a, b| a.cmp(b)); assert_eq!(set.as_slice(), &[1, 2, 3]); } #[test] fn drain() { let mut set: OrderSet = OrderSet::new(); set.insert(1); set.insert(2); set.insert(3); { let drain = set.drain(0..2); assert_eq!(drain.as_slice(), &[1, 2]); } assert_eq!(set.len(), 1); assert_eq!(set.as_slice(), &[3]); } #[test] fn split_off() { let mut set: OrderSet = OrderSet::from([1, 2, 3, 4, 5]); let split_set: OrderSet = set.split_off(3); assert_eq!(split_set.len(), 2); assert_eq!(split_set.as_slice(), &[4, 5]); assert_eq!(set.len(), 3); assert_eq!(set.as_slice(), &[1, 2, 3]); } #[test] fn retain() { let mut set: OrderSet = OrderSet::from([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]); set.retain(|&x| x > 4); assert_eq!(set.len(), 6); assert_eq!(set.as_slice(), &[5, 6, 7, 8, 9, 10]); set.retain(|_| false); assert_eq!(set.len(), 0); } #[test] fn first() { let mut index_set: OrderSet = OrderSet::new(); index_set.insert(10); index_set.insert(20); index_set.insert(30); let result = index_set.first(); assert_eq!(*result.unwrap(), 10); index_set.clear(); let result = index_set.first(); assert!(result.is_none()); } #[test] fn sort_by_key() { let mut index_set: OrderSet = OrderSet::new(); index_set.insert(3); index_set.insert(1); index_set.insert(2); index_set.insert(0); index_set.sort_by_key(|&x| -x); assert_eq!(index_set.as_slice(), &[3, 2, 1, 0]); } #[test] fn sort_unstable_by_key() { let mut index_set: OrderSet = OrderSet::new(); index_set.insert(3); index_set.insert(1); index_set.insert(2); index_set.insert(0); index_set.sort_unstable_by_key(|&x| -x); assert_eq!(index_set.as_slice(), &[3, 2, 1, 0]); } #[test] fn sort_by_cached_key() { let mut index_set: OrderSet = OrderSet::new(); index_set.insert(3); index_set.insert(1); index_set.insert(2); index_set.insert(0); index_set.sort_by_cached_key(|&x| -x); assert_eq!(index_set.as_slice(), &[3, 2, 1, 0]); } #[test] fn insert_sorted() { let mut set: OrderSet = OrderSet::::new(); set.insert_sorted(1); set.insert_sorted(3); assert_eq!(set.insert_sorted(2), (1, true)); } #[test] fn binary_search() { let mut set: OrderSet = OrderSet::new(); set.insert(100); set.insert(300); set.insert(200); set.insert(400); let result = set.binary_search(&200); assert_eq!(result, Ok(2)); let result = set.binary_search(&500); assert_eq!(result, Err(4)); } #[test] fn sorted_unstable_by() { let mut set: OrderSet = OrderSet::from([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]); set.sort_unstable_by(|a, b| b.cmp(a)); assert_eq!(set.as_slice(), &[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]); } #[test] fn last() { let mut set: OrderSet = OrderSet::new(); set.insert(1); set.insert(2); set.insert(3); set.insert(4); set.insert(5); set.insert(6); assert_eq!(set.last(), Some(&6)); set.pop(); assert_eq!(set.last(), Some(&5)); set.clear(); assert_eq!(set.last(), None); } #[test] fn get_range() { let set: OrderSet = OrderSet::from([1, 2, 3, 4, 5]); let result = set.get_range(0..3); let slice: &Slice = result.unwrap(); assert_eq!(slice, &[1, 2, 3]); let result = set.get_range(0..0); assert_eq!(result.unwrap().len(), 0); let result = set.get_range(2..1); assert!(result.is_none()); } #[test] fn shift_take() { let mut set: OrderSet = OrderSet::new(); set.insert(1); set.insert(2); set.insert(3); set.insert(4); set.insert(5); let result = set.take(&2); assert_eq!(result, Some(2)); assert_eq!(set.len(), 4); assert_eq!(set.as_slice(), &[1, 3, 4, 5]); let result = set.take(&5); assert_eq!(result, Some(5)); assert_eq!(set.len(), 3); assert_eq!(set.as_slice(), &[1, 3, 4]); let result = set.take(&5); assert_eq!(result, None); assert_eq!(set.len(), 3); assert_eq!(set.as_slice(), &[1, 3, 4]); } #[test] fn test_binary_search_by() { // adapted from std's test for binary_search let b: OrderSet = [].into(); assert_eq!(b.binary_search_by(|x| x.cmp(&5)), Err(0)); let b: OrderSet = [4].into(); assert_eq!(b.binary_search_by(|x| x.cmp(&3)), Err(0)); assert_eq!(b.binary_search_by(|x| x.cmp(&4)), Ok(0)); assert_eq!(b.binary_search_by(|x| x.cmp(&5)), Err(1)); let b: OrderSet = [1, 2, 4, 6, 8, 9].into(); assert_eq!(b.binary_search_by(|x| x.cmp(&5)), Err(3)); assert_eq!(b.binary_search_by(|x| x.cmp(&6)), Ok(3)); assert_eq!(b.binary_search_by(|x| x.cmp(&7)), Err(4)); assert_eq!(b.binary_search_by(|x| x.cmp(&8)), Ok(4)); let b: OrderSet = [1, 2, 4, 5, 6, 8].into(); assert_eq!(b.binary_search_by(|x| x.cmp(&9)), Err(6)); let b: OrderSet = [1, 2, 4, 6, 7, 8, 9].into(); assert_eq!(b.binary_search_by(|x| x.cmp(&6)), Ok(3)); assert_eq!(b.binary_search_by(|x| x.cmp(&5)), Err(3)); assert_eq!(b.binary_search_by(|x| x.cmp(&8)), Ok(5)); let b: OrderSet = [1, 2, 4, 5, 6, 8, 9].into(); assert_eq!(b.binary_search_by(|x| x.cmp(&7)), Err(5)); assert_eq!(b.binary_search_by(|x| x.cmp(&0)), Err(0)); let b: OrderSet = [1, 3, 3, 3, 7].into(); assert_eq!(b.binary_search_by(|x| x.cmp(&0)), Err(0)); assert_eq!(b.binary_search_by(|x| x.cmp(&1)), Ok(0)); assert_eq!(b.binary_search_by(|x| x.cmp(&2)), Err(1)); // diff from std as set merges the duplicate keys assert!(match b.binary_search_by(|x| x.cmp(&3)) { Ok(1..=2) => true, _ => false, }); assert!(match b.binary_search_by(|x| x.cmp(&3)) { Ok(1..=2) => true, _ => false, }); assert_eq!(b.binary_search_by(|x| x.cmp(&4)), Err(2)); assert_eq!(b.binary_search_by(|x| x.cmp(&5)), Err(2)); assert_eq!(b.binary_search_by(|x| x.cmp(&6)), Err(2)); assert_eq!(b.binary_search_by(|x| x.cmp(&7)), Ok(2)); assert_eq!(b.binary_search_by(|x| x.cmp(&8)), Err(3)); } #[test] fn test_binary_search_by_key() { // adapted from std's test for binary_search let b: OrderSet = [].into(); assert_eq!(b.binary_search_by_key(&5, |&x| x), Err(0)); let b: OrderSet = [4].into(); assert_eq!(b.binary_search_by_key(&3, |&x| x), Err(0)); assert_eq!(b.binary_search_by_key(&4, |&x| x), Ok(0)); assert_eq!(b.binary_search_by_key(&5, |&x| x), Err(1)); let b: OrderSet = [1, 2, 4, 6, 8, 9].into(); assert_eq!(b.binary_search_by_key(&5, |&x| x), Err(3)); assert_eq!(b.binary_search_by_key(&6, |&x| x), Ok(3)); assert_eq!(b.binary_search_by_key(&7, |&x| x), Err(4)); assert_eq!(b.binary_search_by_key(&8, |&x| x), Ok(4)); let b: OrderSet = [1, 2, 4, 5, 6, 8].into(); assert_eq!(b.binary_search_by_key(&9, |&x| x), Err(6)); let b: OrderSet = [1, 2, 4, 6, 7, 8, 9].into(); assert_eq!(b.binary_search_by_key(&6, |&x| x), Ok(3)); assert_eq!(b.binary_search_by_key(&5, |&x| x), Err(3)); assert_eq!(b.binary_search_by_key(&8, |&x| x), Ok(5)); let b: OrderSet = [1, 2, 4, 5, 6, 8, 9].into(); assert_eq!(b.binary_search_by_key(&7, |&x| x), Err(5)); assert_eq!(b.binary_search_by_key(&0, |&x| x), Err(0)); let b: OrderSet = [1, 3, 3, 3, 7].into(); assert_eq!(b.binary_search_by_key(&0, |&x| x), Err(0)); assert_eq!(b.binary_search_by_key(&1, |&x| x), Ok(0)); assert_eq!(b.binary_search_by_key(&2, |&x| x), Err(1)); // diff from std as set merges the duplicate keys assert!(match b.binary_search_by_key(&3, |&x| x) { Ok(1..=2) => true, _ => false, }); assert!(match b.binary_search_by_key(&3, |&x| x) { Ok(1..=2) => true, _ => false, }); assert_eq!(b.binary_search_by_key(&4, |&x| x), Err(2)); assert_eq!(b.binary_search_by_key(&5, |&x| x), Err(2)); assert_eq!(b.binary_search_by_key(&6, |&x| x), Err(2)); assert_eq!(b.binary_search_by_key(&7, |&x| x), Ok(2)); assert_eq!(b.binary_search_by_key(&8, |&x| x), Err(3)); } #[test] fn test_partition_point() { // adapted from std's test for partition_point let b: OrderSet = [].into(); assert_eq!(b.partition_point(|&x| x < 5), 0); let b: OrderSet<_> = [4].into(); assert_eq!(b.partition_point(|&x| x < 3), 0); assert_eq!(b.partition_point(|&x| x < 4), 0); assert_eq!(b.partition_point(|&x| x < 5), 1); let b: OrderSet<_> = [1, 2, 4, 6, 8, 9].into(); assert_eq!(b.partition_point(|&x| x < 5), 3); assert_eq!(b.partition_point(|&x| x < 6), 3); assert_eq!(b.partition_point(|&x| x < 7), 4); assert_eq!(b.partition_point(|&x| x < 8), 4); let b: OrderSet<_> = [1, 2, 4, 5, 6, 8].into(); assert_eq!(b.partition_point(|&x| x < 9), 6); let b: OrderSet<_> = [1, 2, 4, 6, 7, 8, 9].into(); assert_eq!(b.partition_point(|&x| x < 6), 3); assert_eq!(b.partition_point(|&x| x < 5), 3); assert_eq!(b.partition_point(|&x| x < 8), 5); let b: OrderSet<_> = [1, 2, 4, 5, 6, 8, 9].into(); assert_eq!(b.partition_point(|&x| x < 7), 5); assert_eq!(b.partition_point(|&x| x < 0), 0); let b: OrderSet<_> = [1, 3, 3, 3, 7].into(); assert_eq!(b.partition_point(|&x| x < 0), 0); assert_eq!(b.partition_point(|&x| x < 1), 0); assert_eq!(b.partition_point(|&x| x < 2), 1); assert_eq!(b.partition_point(|&x| x < 3), 1); assert_eq!(b.partition_point(|&x| x < 4), 2); // diff from std as set merges the duplicate keys assert_eq!(b.partition_point(|&x| x < 5), 2); assert_eq!(b.partition_point(|&x| x < 6), 2); assert_eq!(b.partition_point(|&x| x < 7), 2); assert_eq!(b.partition_point(|&x| x < 8), 3); } #[test] fn is_sorted() { fn expect(set: &OrderSet, e: [bool; 4]) { assert_eq!(e[0], set.is_sorted()); assert_eq!(e[1], set.is_sorted_by(|v1, v2| v1 < v2)); assert_eq!(e[2], set.is_sorted_by(|v1, v2| v1 > v2)); assert_eq!(e[3], set.is_sorted_by_key(|v| v)); } let mut set = OrderSet::::from_iter(0..10); expect(&set, [true, true, false, true]); set.replace_index(5, -1).unwrap(); expect(&set, [false, false, false, false]); } #[test] fn is_sorted_trivial() { fn expect(set: &OrderSet, e: [bool; 5]) { assert_eq!(e[0], set.is_sorted()); assert_eq!(e[1], set.is_sorted_by(|_, _| true)); assert_eq!(e[2], set.is_sorted_by(|_, _| false)); assert_eq!(e[3], set.is_sorted_by_key(|_| 0f64)); assert_eq!(e[4], set.is_sorted_by_key(|_| f64::NAN)); } let mut set = OrderSet::::default(); expect(&set, [true, true, true, true, true]); set.insert(0); expect(&set, [true, true, true, true, true]); set.insert(1); expect(&set, [true, true, false, true, false]); set.reverse(); expect(&set, [false, true, false, true, false]); } ordermap-1.1.0/src/set.rs000064400000000000000000001342221046102023000133700ustar 00000000000000//! [`OrderSet`] is a hash table set where the iteration order of the items //! is independent of the hash values of the items. //! //! It is based on [`IndexSet`], and even shares many of the auxiliary types //! like [`Slice`] and all of the iterators. //! //! **Unlike** `IndexSet`, `OrderSet` does consider the order for [`PartialEq`] //! and [`Eq`], and it also implements [`PartialOrd`], [`Ord`], and [`Hash`]. //! Methods like [`OrderSet::remove`] use `IndexSet`'s "shift" semantics, so //! they preserve the relative order of remaining entries. mod iter; mod mutable; mod slice; #[cfg(test)] mod tests; pub use self::mutable::MutableValues; pub use indexmap::set::{ Difference, Drain, ExtractIf, Intersection, IntoIter, Iter, Slice, Splice, SymmetricDifference, Union, }; #[cfg(feature = "rayon")] #[cfg_attr(docsrs, doc(cfg(feature = "rayon")))] pub mod rayon; use alloc::boxed::Box; use core::cmp::Ordering; use core::fmt; use core::hash::{BuildHasher, Hash, Hasher}; use core::ops::{BitAnd, BitOr, BitXor, Index, RangeBounds, Sub}; use indexmap::IndexSet; #[cfg(doc)] use alloc::vec::Vec; #[cfg(feature = "std")] use std::hash::RandomState; use crate::{Equivalent, TryReserveError}; /// A hash set where the iteration order of the values is independent of their /// hash values. /// /// The interface is closely compatible with the standard /// [`HashSet`][std::collections::HashSet], /// but also has additional features. /// /// # Order /// /// The values have a consistent order that is determined by the sequence of /// insertion and removal calls on the set. The order does not depend on the /// values or the hash function at all. Note that insertion order and value /// are not affected if a re-insertion is attempted once an element is /// already present. /// /// All iterators traverse the set *in order*. Set operation iterators like /// [`OrderSet::union`] produce a concatenated order, as do their matching "bitwise" /// operators. See their documentation for specifics. /// /// The insertion order is preserved, with **notable exceptions** like the /// [`.swap_remove()`][Self::swap_remove] method. /// Methods such as [`.sort_by()`][Self::sort_by] of /// course result in a new order, depending on the sorting order. /// /// # Indices /// /// The values are indexed in a compact range without holes in the range /// `0..self.len()`. For example, the method `.get_full` looks up the index for /// a value, and the method `.get_index` looks up the value by index. /// /// # Complexity /// /// Internally, `OrderSet` just holds an [`IndexSet`](IndexSet). /// Thus the complexity of the two are the same for most methods. /// /// # Examples /// /// ``` /// use ordermap::OrderSet; /// /// // Collects which letters appear in a sentence. /// let letters: OrderSet<_> = "a short treatise on fungi".chars().collect(); /// /// assert!(letters.contains(&'s')); /// assert!(letters.contains(&'t')); /// assert!(letters.contains(&'u')); /// assert!(!letters.contains(&'y')); /// ``` #[cfg(feature = "std")] pub struct OrderSet { pub(crate) inner: IndexSet, } #[cfg(not(feature = "std"))] pub struct OrderSet { pub(crate) inner: IndexSet, } impl Clone for OrderSet where T: Clone, S: Clone, { fn clone(&self) -> Self { Self { inner: self.inner.clone(), } } fn clone_from(&mut self, other: &Self) { self.inner.clone_from(&other.inner); } } impl fmt::Debug for OrderSet where T: fmt::Debug, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_set().entries(self.iter()).finish() } } #[cfg(feature = "std")] #[cfg_attr(docsrs, doc(cfg(feature = "std")))] impl OrderSet { /// Create a new set. (Does not allocate.) pub fn new() -> Self { Self { inner: IndexSet::new(), } } /// Create a new set with capacity for `n` elements. /// (Does not allocate if `n` is zero.) /// /// Computes in **O(n)** time. pub fn with_capacity(n: usize) -> Self { Self { inner: IndexSet::with_capacity(n), } } } impl OrderSet { /// Create a new set with capacity for `n` elements. /// (Does not allocate if `n` is zero.) /// /// Computes in **O(n)** time. pub fn with_capacity_and_hasher(n: usize, hash_builder: S) -> Self { Self { inner: IndexSet::with_capacity_and_hasher(n, hash_builder), } } /// Create a new set with `hash_builder`. /// /// This function is `const`, so it /// can be called in `static` contexts. pub const fn with_hasher(hash_builder: S) -> Self { Self { inner: IndexSet::with_hasher(hash_builder), } } /// Return the number of elements the set can hold without reallocating. /// /// This number is a lower bound; the set might be able to hold more, /// but is guaranteed to be able to hold at least this many. /// /// Computes in **O(1)** time. pub fn capacity(&self) -> usize { self.inner.capacity() } /// Return a reference to the set's `BuildHasher`. pub fn hasher(&self) -> &S { self.inner.hasher() } /// Return the number of elements in the set. /// /// Computes in **O(1)** time. pub fn len(&self) -> usize { self.inner.len() } /// Returns true if the set contains no elements. /// /// Computes in **O(1)** time. pub fn is_empty(&self) -> bool { self.inner.is_empty() } /// Return an iterator over the values of the set, in their order pub fn iter(&self) -> Iter<'_, T> { self.inner.iter() } /// Remove all elements in the set, while preserving its capacity. /// /// Computes in **O(n)** time. pub fn clear(&mut self) { self.inner.clear(); } /// Shortens the set, keeping the first `len` elements and dropping the rest. /// /// If `len` is greater than the set's current length, this has no effect. pub fn truncate(&mut self, len: usize) { self.inner.truncate(len); } /// Clears the `OrderSet` in the given index range, returning those values /// as a drain iterator. /// /// The range may be any type that implements [`RangeBounds`], /// including all of the `std::ops::Range*` types, or even a tuple pair of /// `Bound` start and end values. To drain the set entirely, use `RangeFull` /// like `set.drain(..)`. /// /// This shifts down all entries following the drained range to fill the /// gap, and keeps the allocated memory for reuse. /// /// ***Panics*** if the starting point is greater than the end point or if /// the end point is greater than the length of the set. #[track_caller] pub fn drain(&mut self, range: R) -> Drain<'_, T> where R: RangeBounds, { self.inner.drain(range) } /// Creates an iterator which uses a closure to determine if a value should be removed, /// for all values in the given range. /// /// If the closure returns true, then the value is removed and yielded. /// If the closure returns false, the value will remain in the list and will not be yielded /// by the iterator. /// /// The range may be any type that implements [`RangeBounds`], /// including all of the `std::ops::Range*` types, or even a tuple pair of /// `Bound` start and end values. To check the entire set, use `RangeFull` /// like `set.extract_if(.., predicate)`. /// /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating /// or the iteration short-circuits, then the remaining elements will be retained. /// Use [`retain`] with a negated predicate if you do not need the returned iterator. /// /// [`retain`]: OrderSet::retain /// /// ***Panics*** if the starting point is greater than the end point or if /// the end point is greater than the length of the set. /// /// # Examples /// /// Splitting a set into even and odd values, reusing the original set: /// /// ``` /// use ordermap::OrderSet; /// /// let mut set: OrderSet = (0..8).collect(); /// let extracted: OrderSet = set.extract_if(.., |v| v % 2 == 0).collect(); /// /// let evens = extracted.into_iter().collect::>(); /// let odds = set.into_iter().collect::>(); /// /// assert_eq!(evens, vec![0, 2, 4, 6]); /// assert_eq!(odds, vec![1, 3, 5, 7]); /// ``` #[track_caller] pub fn extract_if(&mut self, range: R, pred: F) -> ExtractIf<'_, T, F> where F: FnMut(&T) -> bool, R: RangeBounds, { self.inner.extract_if(range, pred) } /// Splits the collection into two at the given index. /// /// Returns a newly allocated set containing the elements in the range /// `[at, len)`. After the call, the original set will be left containing /// the elements `[0, at)` with its previous capacity unchanged. /// /// ***Panics*** if `at > len`. #[track_caller] pub fn split_off(&mut self, at: usize) -> Self where S: Clone, { Self { inner: self.inner.split_off(at), } } /// Reserve capacity for `additional` more values. /// /// Computes in **O(n)** time. pub fn reserve(&mut self, additional: usize) { self.inner.reserve(additional); } /// Reserve capacity for `additional` more values, without over-allocating. /// /// Unlike `reserve`, this does not deliberately over-allocate the entry capacity to avoid /// frequent re-allocations. However, the underlying data structures may still have internal /// capacity requirements, and the allocator itself may give more space than requested, so this /// cannot be relied upon to be precisely minimal. /// /// Computes in **O(n)** time. pub fn reserve_exact(&mut self, additional: usize) { self.inner.reserve_exact(additional); } /// Try to reserve capacity for `additional` more values. /// /// Computes in **O(n)** time. pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> { self.inner.try_reserve(additional) } /// Try to reserve capacity for `additional` more values, without over-allocating. /// /// Unlike `try_reserve`, this does not deliberately over-allocate the entry capacity to avoid /// frequent re-allocations. However, the underlying data structures may still have internal /// capacity requirements, and the allocator itself may give more space than requested, so this /// cannot be relied upon to be precisely minimal. /// /// Computes in **O(n)** time. pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> { self.inner.try_reserve_exact(additional) } /// Shrink the capacity of the set as much as possible. /// /// Computes in **O(n)** time. pub fn shrink_to_fit(&mut self) { self.inner.shrink_to_fit(); } /// Shrink the capacity of the set with a lower limit. /// /// Computes in **O(n)** time. pub fn shrink_to(&mut self, min_capacity: usize) { self.inner.shrink_to(min_capacity); } } impl OrderSet where T: Hash + Eq, S: BuildHasher, { /// Insert the value into the set. /// /// If an equivalent item already exists in the set, it returns /// `false` leaving the original value in the set and without /// altering its insertion order. Otherwise, it inserts the new /// item and returns `true`. /// /// Computes in **O(1)** time (amortized average). pub fn insert(&mut self, value: T) -> bool { self.inner.insert(value) } /// Insert the value into the set, and get its index. /// /// If an equivalent item already exists in the set, it returns /// the index of the existing item and `false`, leaving the /// original value in the set and without altering its insertion /// order. Otherwise, it inserts the new item and returns the index /// of the inserted item and `true`. /// /// Computes in **O(1)** time (amortized average). pub fn insert_full(&mut self, value: T) -> (usize, bool) { self.inner.insert_full(value) } /// Insert the value into the set at its ordered position among sorted values. /// /// This is equivalent to finding the position with /// [`binary_search`][Self::binary_search], and if needed calling /// [`insert_before`][Self::insert_before] for a new value. /// /// If the sorted item is found in the set, it returns the index of that /// existing item and `false`, without any change. Otherwise, it inserts the /// new item and returns its sorted index and `true`. /// /// If the existing items are **not** already sorted, then the insertion /// index is unspecified (like [`slice::binary_search`]), but the value /// is moved to or inserted at that position regardless. /// /// Computes in **O(n)** time (average). Instead of repeating calls to /// `insert_sorted`, it may be faster to call batched [`insert`][Self::insert] /// or [`extend`][Self::extend] and only call [`sort`][Self::sort] or /// [`sort_unstable`][Self::sort_unstable] once. pub fn insert_sorted(&mut self, value: T) -> (usize, bool) where T: Ord, { self.inner.insert_sorted(value) } /// Insert the value into the set at its ordered position among values /// sorted by `cmp`. /// /// This is equivalent to finding the position with /// [`binary_search_by`][Self::binary_search_by], then calling /// [`insert_before`][Self::insert_before]. /// /// If the existing items are **not** already sorted, then the insertion /// index is unspecified (like [`slice::binary_search`]), but the value /// is moved to or inserted at that position regardless. /// /// Computes in **O(n)** time (average). pub fn insert_sorted_by(&mut self, value: T, cmp: F) -> (usize, bool) where F: FnMut(&T, &T) -> Ordering, { self.inner.insert_sorted_by(value, cmp) } /// Insert the value into the set at its ordered position among values /// using a sort-key extraction function. /// /// This is equivalent to finding the position with /// [`binary_search_by_key`][Self::binary_search_by_key] with `sort_key(key)`, /// then calling [`insert_before`][Self::insert_before]. /// /// If the existing items are **not** already sorted, then the insertion /// index is unspecified (like [`slice::binary_search`]), but the value /// is moved to or inserted at that position regardless. /// /// Computes in **O(n)** time (average). pub fn insert_sorted_by_key(&mut self, value: T, sort_key: F) -> (usize, bool) where B: Ord, F: FnMut(&T) -> B, { self.inner.insert_sorted_by_key(value, sort_key) } /// Insert the value into the set before the value at the given index, or at the end. /// /// If an equivalent item already exists in the set, it returns `false` leaving the /// original value in the set, but moved to the new position. The returned index /// will either be the given index or one less, depending on how the value moved. /// (See [`shift_insert`](Self::shift_insert) for different behavior here.) /// /// Otherwise, it inserts the new value exactly at the given index and returns `true`. /// /// ***Panics*** if `index` is out of bounds. /// Valid indices are `0..=set.len()` (inclusive). /// /// Computes in **O(n)** time (average). /// /// # Examples /// /// ``` /// use ordermap::OrderSet; /// let mut set: OrderSet = ('a'..='z').collect(); /// /// // The new value '*' goes exactly at the given index. /// assert_eq!(set.get_index_of(&'*'), None); /// assert_eq!(set.insert_before(10, '*'), (10, true)); /// assert_eq!(set.get_index_of(&'*'), Some(10)); /// /// // Moving the value 'a' up will shift others down, so this moves *before* 10 to index 9. /// assert_eq!(set.insert_before(10, 'a'), (9, false)); /// assert_eq!(set.get_index_of(&'a'), Some(9)); /// assert_eq!(set.get_index_of(&'*'), Some(10)); /// /// // Moving the value 'z' down will shift others up, so this moves to exactly 10. /// assert_eq!(set.insert_before(10, 'z'), (10, false)); /// assert_eq!(set.get_index_of(&'z'), Some(10)); /// assert_eq!(set.get_index_of(&'*'), Some(11)); /// /// // Moving or inserting before the endpoint is also valid. /// assert_eq!(set.len(), 27); /// assert_eq!(set.insert_before(set.len(), '*'), (26, false)); /// assert_eq!(set.get_index_of(&'*'), Some(26)); /// assert_eq!(set.insert_before(set.len(), '+'), (27, true)); /// assert_eq!(set.get_index_of(&'+'), Some(27)); /// assert_eq!(set.len(), 28); /// ``` #[track_caller] pub fn insert_before(&mut self, index: usize, value: T) -> (usize, bool) { self.inner.insert_before(index, value) } /// Insert the value into the set at the given index. /// /// If an equivalent item already exists in the set, it returns `false` leaving /// the original value in the set, but moved to the given index. /// Note that existing values **cannot** be moved to `index == set.len()`! /// (See [`insert_before`](Self::insert_before) for different behavior here.) /// /// Otherwise, it inserts the new value at the given index and returns `true`. /// /// ***Panics*** if `index` is out of bounds. /// Valid indices are `0..set.len()` (exclusive) when moving an existing value, or /// `0..=set.len()` (inclusive) when inserting a new value. /// /// Computes in **O(n)** time (average). /// /// # Examples /// /// ``` /// use ordermap::OrderSet; /// let mut set: OrderSet = ('a'..='z').collect(); /// /// // The new value '*' goes exactly at the given index. /// assert_eq!(set.get_index_of(&'*'), None); /// assert_eq!(set.shift_insert(10, '*'), true); /// assert_eq!(set.get_index_of(&'*'), Some(10)); /// /// // Moving the value 'a' up to 10 will shift others down, including the '*' that was at 10. /// assert_eq!(set.shift_insert(10, 'a'), false); /// assert_eq!(set.get_index_of(&'a'), Some(10)); /// assert_eq!(set.get_index_of(&'*'), Some(9)); /// /// // Moving the value 'z' down to 9 will shift others up, including the '*' that was at 9. /// assert_eq!(set.shift_insert(9, 'z'), false); /// assert_eq!(set.get_index_of(&'z'), Some(9)); /// assert_eq!(set.get_index_of(&'*'), Some(10)); /// /// // Existing values can move to len-1 at most, but new values can insert at the endpoint. /// assert_eq!(set.len(), 27); /// assert_eq!(set.shift_insert(set.len() - 1, '*'), false); /// assert_eq!(set.get_index_of(&'*'), Some(26)); /// assert_eq!(set.shift_insert(set.len(), '+'), true); /// assert_eq!(set.get_index_of(&'+'), Some(27)); /// assert_eq!(set.len(), 28); /// ``` /// /// ```should_panic /// use ordermap::OrderSet; /// let mut set: OrderSet = ('a'..='z').collect(); /// /// // This is an invalid index for moving an existing value! /// set.shift_insert(set.len(), 'a'); /// ``` #[track_caller] pub fn shift_insert(&mut self, index: usize, value: T) -> bool { self.inner.shift_insert(index, value) } /// Adds a value to the set, replacing the existing value, if any, that is /// equal to the given one, without altering its insertion order. Returns /// the replaced value. /// /// Computes in **O(1)** time (average). pub fn replace(&mut self, value: T) -> Option { self.inner.replace(value) } /// Adds a value to the set, replacing the existing value, if any, that is /// equal to the given one, without altering its insertion order. Returns /// the index of the item and its replaced value. /// /// Computes in **O(1)** time (average). pub fn replace_full(&mut self, value: T) -> (usize, Option) { self.inner.replace_full(value) } /// Replaces the value at the given index. The new value does not need to be /// equivalent to the one it is replacing, but it must be unique to the rest /// of the set. /// /// Returns `Ok(old_value)` if successful, or `Err((other_index, value))` if /// an equivalent value already exists at a different index. The set will be /// unchanged in the error case. /// /// ***Panics*** if `index` is out of bounds. /// /// Computes in **O(1)** time (average). #[track_caller] pub fn replace_index(&mut self, index: usize, value: T) -> Result { self.inner.replace_index(index, value) } /// Return an iterator over the values that are in `self` but not `other`. /// /// Values are produced in the same order that they appear in `self`. pub fn difference<'a, S2>(&'a self, other: &'a OrderSet) -> Difference<'a, T, S2> where S2: BuildHasher, { self.inner.difference(&other.inner) } /// Return an iterator over the values that are in `self` or `other`, /// but not in both. /// /// Values from `self` are produced in their original order, followed by /// values from `other` in their original order. pub fn symmetric_difference<'a, S2>( &'a self, other: &'a OrderSet, ) -> SymmetricDifference<'a, T, S, S2> where S2: BuildHasher, { self.inner.symmetric_difference(&other.inner) } /// Return an iterator over the values that are in both `self` and `other`. /// /// Values are produced in the same order that they appear in `self`. pub fn intersection<'a, S2>(&'a self, other: &'a OrderSet) -> Intersection<'a, T, S2> where S2: BuildHasher, { self.inner.intersection(&other.inner) } /// Return an iterator over all values that are in `self` or `other`. /// /// Values from `self` are produced in their original order, followed by /// values that are unique to `other` in their original order. pub fn union<'a, S2>(&'a self, other: &'a OrderSet) -> Union<'a, T, S> where S2: BuildHasher, { self.inner.union(&other.inner) } /// Creates a splicing iterator that replaces the specified range in the set /// with the given `replace_with` iterator and yields the removed items. /// `replace_with` does not need to be the same length as `range`. /// /// The `range` is removed even if the iterator is not consumed until the /// end. It is unspecified how many elements are removed from the set if the /// `Splice` value is leaked. /// /// The input iterator `replace_with` is only consumed when the `Splice` /// value is dropped. If a value from the iterator matches an existing entry /// in the set (outside of `range`), then the original will be unchanged. /// Otherwise, the new value will be inserted in the replaced `range`. /// /// ***Panics*** if the starting point is greater than the end point or if /// the end point is greater than the length of the set. /// /// # Examples /// /// ``` /// use ordermap::OrderSet; /// /// let mut set = OrderSet::from([0, 1, 2, 3, 4]); /// let new = [5, 4, 3, 2, 1]; /// let removed: Vec<_> = set.splice(2..4, new).collect(); /// /// // 1 and 4 kept their positions, while 5, 3, and 2 were newly inserted. /// assert!(set.into_iter().eq([0, 1, 5, 3, 2, 4])); /// assert_eq!(removed, &[2, 3]); /// ``` #[track_caller] pub fn splice(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, T, S> where R: RangeBounds, I: IntoIterator, { self.inner.splice(range, replace_with) } /// Moves all values from `other` into `self`, leaving `other` empty. /// /// This is equivalent to calling [`insert`][Self::insert] for each value /// from `other` in order, which means that values that already exist /// in `self` are unchanged in their current position. /// /// See also [`union`][Self::union] to iterate the combined values by /// reference, without modifying `self` or `other`. /// /// # Examples /// /// ``` /// use ordermap::OrderSet; /// /// let mut a = OrderSet::from([3, 2, 1]); /// let mut b = OrderSet::from([3, 4, 5]); /// let old_capacity = b.capacity(); /// /// a.append(&mut b); /// /// assert_eq!(a.len(), 5); /// assert_eq!(b.len(), 0); /// assert_eq!(b.capacity(), old_capacity); /// /// assert!(a.iter().eq(&[3, 2, 1, 4, 5])); /// ``` pub fn append(&mut self, other: &mut OrderSet) { self.inner.append(&mut other.inner); } } impl OrderSet where S: BuildHasher, { /// Return `true` if an equivalent to `value` exists in the set. /// /// Computes in **O(1)** time (average). pub fn contains(&self, value: &Q) -> bool where Q: ?Sized + Hash + Equivalent, { self.inner.contains(value) } /// Return a reference to the value stored in the set, if it is present, /// else `None`. /// /// Computes in **O(1)** time (average). pub fn get(&self, value: &Q) -> Option<&T> where Q: ?Sized + Hash + Equivalent, { self.inner.get(value) } /// Return item index and value pub fn get_full(&self, value: &Q) -> Option<(usize, &T)> where Q: ?Sized + Hash + Equivalent, { self.inner.get_full(value) } /// Return item index, if it exists in the set /// /// Computes in **O(1)** time (average). pub fn get_index_of(&self, value: &Q) -> Option where Q: ?Sized + Hash + Equivalent, { self.inner.get_index_of(value) } /// Remove the value from the set, and return `true` if it was present. /// /// **NOTE:** This is equivalent to [`IndexSet::shift_remove`], and /// like [`Vec::remove`], the value is removed by shifting all of the /// elements that follow it, preserving their relative order. /// **This perturbs the index of all of those elements!** /// /// Return `false` if `value` was not in the set. /// /// Computes in **O(n)** time (average). pub fn remove(&mut self, value: &Q) -> bool where Q: ?Sized + Hash + Equivalent, { self.inner.shift_remove(value) } /// Remove the value from the set, and return `true` if it was present. /// /// Like [`Vec::swap_remove`], the value is removed by swapping it with the /// last element of the set and popping it off. **This perturbs /// the position of what used to be the last element!** /// /// Return `false` if `value` was not in the set. /// /// Computes in **O(1)** time (average). pub fn swap_remove(&mut self, value: &Q) -> bool where Q: ?Sized + Hash + Equivalent, { self.inner.swap_remove(value) } /// Removes and returns the value in the set, if any, that is equal to the /// given one. /// /// **NOTE:** This is equivalent to [`IndexSet::shift_take`], and /// like [`Vec::remove`], the value is removed by shifting all of the /// elements that follow it, preserving their relative order. /// **This perturbs the index of all of those elements!** /// /// Return `None` if `value` was not in the set. /// /// Computes in **O(n)** time (average). pub fn take(&mut self, value: &Q) -> Option where Q: ?Sized + Hash + Equivalent, { self.inner.shift_take(value) } /// Removes and returns the value in the set, if any, that is equal to the /// given one. /// /// Like [`Vec::swap_remove`], the value is removed by swapping it with the /// last element of the set and popping it off. **This perturbs /// the position of what used to be the last element!** /// /// Return `None` if `value` was not in the set. /// /// Computes in **O(1)** time (average). pub fn swap_take(&mut self, value: &Q) -> Option where Q: ?Sized + Hash + Equivalent, { self.inner.swap_take(value) } /// Remove the value from the set return it and the index it had. /// /// **NOTE:** This is equivalent to [`IndexSet::shift_remove_full`], and /// like [`Vec::remove`], the value is removed by shifting all of the /// elements that follow it, preserving their relative order. /// **This perturbs the index of all of those elements!** /// /// Return `None` if `value` was not in the set. pub fn remove_full(&mut self, value: &Q) -> Option<(usize, T)> where Q: ?Sized + Hash + Equivalent, { self.inner.shift_remove_full(value) } /// Remove the value from the set return it and the index it had. /// /// Like [`Vec::swap_remove`], the value is removed by swapping it with the /// last element of the set and popping it off. **This perturbs /// the position of what used to be the last element!** /// /// Return `None` if `value` was not in the set. pub fn swap_remove_full(&mut self, value: &Q) -> Option<(usize, T)> where Q: ?Sized + Hash + Equivalent, { self.inner.swap_remove_full(value) } } impl OrderSet { /// Remove the last value /// /// This preserves the order of the remaining elements. /// /// Computes in **O(1)** time (average). #[doc(alias = "pop_last")] // like `BTreeSet` pub fn pop(&mut self) -> Option { self.inner.pop() } /// Removes and returns the last value from a set if the predicate /// returns `true`, or [`None`] if the predicate returns false or the set /// is empty (the predicate will not be called in that case). /// /// This preserves the order of the remaining elements. /// /// Computes in **O(1)** time (average). /// /// # Examples /// /// ``` /// use ordermap::OrderSet; /// /// let mut set = OrderSet::from([1, 2, 3, 4]); /// let pred = |x: &i32| *x % 2 == 0; /// /// assert_eq!(set.pop_if(pred), Some(4)); /// assert_eq!(set.as_slice(), &[1, 2, 3]); /// assert_eq!(set.pop_if(pred), None); /// ``` pub fn pop_if(&mut self, predicate: impl FnOnce(&T) -> bool) -> Option { self.inner.pop_if(predicate) } /// Scan through each value in the set and keep those where the /// closure `keep` returns `true`. /// /// The elements are visited in order, and remaining elements keep their /// order. /// /// Computes in **O(n)** time (average). pub fn retain(&mut self, keep: F) where F: FnMut(&T) -> bool, { self.inner.retain(keep) } /// Sort the set's values by their default ordering. /// /// This is a stable sort -- but equivalent values should not normally coexist in /// a set at all, so [`sort_unstable`][Self::sort_unstable] is preferred /// because it is generally faster and doesn't allocate auxiliary memory. /// /// See [`sort_by`](Self::sort_by) for details. pub fn sort(&mut self) where T: Ord, { self.inner.sort() } /// Sort the set's values in place using the comparison function `cmp`. /// /// Computes in **O(n log n)** time and **O(n)** space. The sort is stable. pub fn sort_by(&mut self, cmp: F) where F: FnMut(&T, &T) -> Ordering, { self.inner.sort_by(cmp); } /// Sort the values of the set and return a by-value iterator of /// the values with the result. /// /// The sort is stable. pub fn sorted_by(self, cmp: F) -> IntoIter where F: FnMut(&T, &T) -> Ordering, { self.inner.sorted_by(cmp) } /// Sort the set's values in place using a key extraction function. /// /// Computes in **O(n log n)** time and **O(n)** space. The sort is stable. pub fn sort_by_key(&mut self, sort_key: F) where K: Ord, F: FnMut(&T) -> K, { self.inner.sort_by_key(sort_key) } /// Sort the set's values by their default ordering. /// /// See [`sort_unstable_by`](Self::sort_unstable_by) for details. pub fn sort_unstable(&mut self) where T: Ord, { self.inner.sort_unstable() } /// Sort the set's values in place using the comparison function `cmp`. /// /// Computes in **O(n log n)** time. The sort is unstable. pub fn sort_unstable_by(&mut self, cmp: F) where F: FnMut(&T, &T) -> Ordering, { self.inner.sort_unstable_by(cmp) } /// Sort the values of the set and return a by-value iterator of /// the values with the result. pub fn sorted_unstable_by(self, cmp: F) -> IntoIter where F: FnMut(&T, &T) -> Ordering, { self.inner.sorted_unstable_by(cmp) } /// Sort the set's values in place using a key extraction function. /// /// Computes in **O(n log n)** time. The sort is unstable. pub fn sort_unstable_by_key(&mut self, sort_key: F) where K: Ord, F: FnMut(&T) -> K, { self.inner.sort_unstable_by_key(sort_key) } /// Sort the set's values in place using a key extraction function. /// /// During sorting, the function is called at most once per entry, by using temporary storage /// to remember the results of its evaluation. The order of calls to the function is /// unspecified and may change between versions of `ordermap` or the standard library. /// /// Computes in **O(m n + n log n + c)** time () and **O(n)** space, where the function is /// **O(m)**, *n* is the length of the map, and *c* the capacity. The sort is stable. pub fn sort_by_cached_key(&mut self, sort_key: F) where K: Ord, F: FnMut(&T) -> K, { self.inner.sort_by_cached_key(sort_key) } /// Search over a sorted set for a value. /// /// Returns the position where that value is present, or the position where it can be inserted /// to maintain the sort. See [`slice::binary_search`] for more details. /// /// Computes in **O(log(n))** time, which is notably less scalable than looking the value up /// using [`get_index_of`][OrderSet::get_index_of], but this can also position missing values. pub fn binary_search(&self, x: &T) -> Result where T: Ord, { self.inner.binary_search(x) } /// Search over a sorted set with a comparator function. /// /// Returns the position where that value is present, or the position where it can be inserted /// to maintain the sort. See [`slice::binary_search_by`] for more details. /// /// Computes in **O(log(n))** time. #[inline] pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result where F: FnMut(&'a T) -> Ordering, { self.inner.binary_search_by(f) } /// Search over a sorted set with an extraction function. /// /// Returns the position where that value is present, or the position where it can be inserted /// to maintain the sort. See [`slice::binary_search_by_key`] for more details. /// /// Computes in **O(log(n))** time. #[inline] pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result where F: FnMut(&'a T) -> B, B: Ord, { self.inner.binary_search_by_key(b, f) } /// Checks if the values of this set are sorted. #[inline] pub fn is_sorted(&self) -> bool where T: PartialOrd, { self.inner.is_sorted() } /// Checks if this set is sorted using the given comparator function. #[inline] pub fn is_sorted_by<'a, F>(&'a self, cmp: F) -> bool where F: FnMut(&'a T, &'a T) -> bool, { self.inner.is_sorted_by(cmp) } /// Checks if this set is sorted using the given sort-key function. #[inline] pub fn is_sorted_by_key<'a, F, K>(&'a self, sort_key: F) -> bool where F: FnMut(&'a T) -> K, K: PartialOrd, { self.inner.is_sorted_by_key(sort_key) } /// Returns the index of the partition point of a sorted set according to the given predicate /// (the index of the first element of the second partition). /// /// See [`slice::partition_point`] for more details. /// /// Computes in **O(log(n))** time. #[must_use] pub fn partition_point

(&self, pred: P) -> usize where P: FnMut(&T) -> bool, { self.inner.partition_point(pred) } /// Reverses the order of the set's values in place. /// /// Computes in **O(n)** time and **O(1)** space. pub fn reverse(&mut self) { self.inner.reverse() } /// Returns a slice of all the values in the set. /// /// Computes in **O(1)** time. pub fn as_slice(&self) -> &Slice { self.inner.as_slice() } /// Converts into a boxed slice of all the values in the set. /// /// Note that this will drop the inner hash table and any excess capacity. pub fn into_boxed_slice(self) -> Box> { self.inner.into_boxed_slice() } /// Get a value by index /// /// Valid indices are `0 <= index < self.len()`. /// /// Computes in **O(1)** time. pub fn get_index(&self, index: usize) -> Option<&T> { self.inner.get_index(index) } /// Returns a slice of values in the given range of indices. /// /// Valid indices are `0 <= index < self.len()`. /// /// Computes in **O(1)** time. pub fn get_range>(&self, range: R) -> Option<&Slice> { self.inner.get_range(range) } /// Get the first value /// /// Computes in **O(1)** time. pub fn first(&self) -> Option<&T> { self.inner.first() } /// Get the last value /// /// Computes in **O(1)** time. pub fn last(&self) -> Option<&T> { self.inner.last() } /// Remove the value by index /// /// Valid indices are `0 <= index < self.len()` /// /// **NOTE:** This is equivalent to [`IndexSet::shift_remove_index`], and /// like [`Vec::remove`], the value is removed by shifting all of the /// elements that follow it, preserving their relative order. /// **This perturbs the index of all of those elements!** /// /// Computes in **O(n)** time (average). pub fn remove_index(&mut self, index: usize) -> Option { self.inner.shift_remove_index(index) } /// Remove the value by index /// /// Valid indices are `0 <= index < self.len()`. /// /// Like [`Vec::swap_remove`], the value is removed by swapping it with the /// last element of the set and popping it off. **This perturbs /// the position of what used to be the last element!** /// /// Computes in **O(1)** time (average). pub fn swap_remove_index(&mut self, index: usize) -> Option { self.inner.swap_remove_index(index) } /// Moves the position of a value from one index to another /// by shifting all other values in-between. /// /// * If `from < to`, the other values will shift down while the targeted value moves up. /// * If `from > to`, the other values will shift up while the targeted value moves down. /// /// ***Panics*** if `from` or `to` are out of bounds. /// /// Computes in **O(n)** time (average). #[track_caller] pub fn move_index(&mut self, from: usize, to: usize) { self.inner.move_index(from, to) } /// Swaps the position of two values in the set. /// /// ***Panics*** if `a` or `b` are out of bounds. /// /// Computes in **O(1)** time (average). #[track_caller] pub fn swap_indices(&mut self, a: usize, b: usize) { self.inner.swap_indices(a, b) } } /// Access [`OrderSet`] values at indexed positions. /// /// # Examples /// /// ``` /// use ordermap::OrderSet; /// /// let mut set = OrderSet::new(); /// for word in "Lorem ipsum dolor sit amet".split_whitespace() { /// set.insert(word.to_string()); /// } /// assert_eq!(set[0], "Lorem"); /// assert_eq!(set[1], "ipsum"); /// set.reverse(); /// assert_eq!(set[0], "amet"); /// assert_eq!(set[1], "sit"); /// set.sort(); /// assert_eq!(set[0], "Lorem"); /// assert_eq!(set[1], "amet"); /// ``` /// /// ```should_panic /// use ordermap::OrderSet; /// /// let mut set = OrderSet::new(); /// set.insert("foo"); /// println!("{:?}", set[10]); // panics! /// ``` impl Index for OrderSet { type Output = T; /// Returns a reference to the value at the supplied `index`. /// /// ***Panics*** if `index` is out of bounds. fn index(&self, index: usize) -> &T { if let Some(value) = self.get_index(index) { value } else { panic!( "index out of bounds: the len is {len} but the index is {index}", len = self.len() ); } } } impl FromIterator for OrderSet where T: Hash + Eq, S: BuildHasher + Default, { fn from_iter>(iterable: I) -> Self { Self { inner: IndexSet::from_iter(iterable), } } } #[cfg(feature = "std")] #[cfg_attr(docsrs, doc(cfg(feature = "std")))] impl From<[T; N]> for OrderSet where T: Eq + Hash, { /// # Examples /// /// ``` /// use ordermap::OrderSet; /// /// let set1 = OrderSet::from([1, 2, 3, 4]); /// let set2: OrderSet<_> = [1, 2, 3, 4].into(); /// assert_eq!(set1, set2); /// ``` fn from(arr: [T; N]) -> Self { Self::from_iter(arr) } } impl Extend for OrderSet where T: Hash + Eq, S: BuildHasher, { fn extend>(&mut self, iterable: I) { self.inner.extend(iterable); } } impl<'a, T, S> Extend<&'a T> for OrderSet where T: Hash + Eq + Copy + 'a, S: BuildHasher, { fn extend>(&mut self, iterable: I) { self.inner.extend(iterable); } } impl Default for OrderSet where S: Default, { /// Return an empty [`OrderSet`] fn default() -> Self { OrderSet { inner: IndexSet::default(), } } } impl PartialEq> for OrderSet where T: PartialEq, { fn eq(&self, other: &OrderSet) -> bool { self.len() == other.len() && self.iter().eq(other) } } impl Eq for OrderSet where T: Eq {} impl PartialOrd> for OrderSet where T: PartialOrd, { fn partial_cmp(&self, other: &OrderSet) -> Option { self.iter().partial_cmp(other) } } impl Ord for OrderSet where T: Ord, { fn cmp(&self, other: &Self) -> Ordering { self.iter().cmp(other) } } impl Hash for OrderSet where T: Hash, { fn hash(&self, state: &mut H) { self.len().hash(state); for value in self { value.hash(state); } } } impl OrderSet where T: Eq + Hash, S: BuildHasher, { /// Returns `true` if `self` has no elements in common with `other`. pub fn is_disjoint(&self, other: &OrderSet) -> bool where S2: BuildHasher, { self.inner.is_disjoint(&other.inner) } /// Returns `true` if all elements of `self` are contained in `other`. pub fn is_subset(&self, other: &OrderSet) -> bool where S2: BuildHasher, { self.inner.is_subset(&other.inner) } /// Returns `true` if all elements of `other` are contained in `self`. pub fn is_superset(&self, other: &OrderSet) -> bool where S2: BuildHasher, { self.inner.is_superset(&other.inner) } /// Returns `true` if `self` and `other` contain exactly the same elements, /// even if they are not in the same order. /// /// (Note that `PartialEq for OrderSet` **does** consider the order.) pub fn set_eq(&self, other: &OrderSet) -> bool where S2: BuildHasher, { self.inner == other.inner } } impl BitAnd<&OrderSet> for &OrderSet where T: Eq + Hash + Clone, S1: BuildHasher + Default, S2: BuildHasher, { type Output = OrderSet; /// Returns the set intersection, cloned into a new set. /// /// Values are collected in the same order that they appear in `self`. fn bitand(self, other: &OrderSet) -> Self::Output { OrderSet { inner: &self.inner & &other.inner, } } } impl BitOr<&OrderSet> for &OrderSet where T: Eq + Hash + Clone, S1: BuildHasher + Default, S2: BuildHasher, { type Output = OrderSet; /// Returns the set union, cloned into a new set. /// /// Values from `self` are collected in their original order, followed by /// values that are unique to `other` in their original order. fn bitor(self, other: &OrderSet) -> Self::Output { OrderSet { inner: &self.inner | &other.inner, } } } impl BitXor<&OrderSet> for &OrderSet where T: Eq + Hash + Clone, S1: BuildHasher + Default, S2: BuildHasher, { type Output = OrderSet; /// Returns the set symmetric-difference, cloned into a new set. /// /// Values from `self` are collected in their original order, followed by /// values from `other` in their original order. fn bitxor(self, other: &OrderSet) -> Self::Output { OrderSet { inner: &self.inner ^ &other.inner, } } } impl Sub<&OrderSet> for &OrderSet where T: Eq + Hash + Clone, S1: BuildHasher + Default, S2: BuildHasher, { type Output = OrderSet; /// Returns the set difference, cloned into a new set. /// /// Values are collected in the same order that they appear in `self`. fn sub(self, other: &OrderSet) -> Self::Output { OrderSet { inner: &self.inner - &other.inner, } } } ordermap-1.1.0/src/sval.rs000064400000000000000000000007551046102023000135450ustar 00000000000000#![cfg_attr(docsrs, doc(cfg(feature = "sval")))] use crate::{OrderMap, OrderSet}; use sval::{Stream, Value}; impl Value for OrderMap { fn stream<'sval, ST: Stream<'sval> + ?Sized>(&'sval self, stream: &mut ST) -> sval::Result { self.inner.stream(stream) } } impl Value for OrderSet { fn stream<'sval, ST: Stream<'sval> + ?Sized>(&'sval self, stream: &mut ST) -> sval::Result { self.inner.stream(stream) } } ordermap-1.1.0/tests/equivalent_trait.rs000064400000000000000000000020411046102023000165210ustar 00000000000000use ordermap::ordermap; use ordermap::Equivalent; use std::hash::Hash; #[derive(Debug, Hash)] pub struct Pair(pub A, pub B); impl PartialEq<(A, B)> for Pair where C: PartialEq, D: PartialEq, { fn eq(&self, rhs: &(A, B)) -> bool { self.0 == rhs.0 && self.1 == rhs.1 } } impl Equivalent for Pair where Pair: PartialEq, A: Hash + Eq, B: Hash + Eq, { fn equivalent(&self, other: &X) -> bool { *self == *other } } #[test] fn test_lookup() { let s = String::from; let map = ordermap! { (s("a"), s("b")) => 1, (s("a"), s("x")) => 2, }; assert!(map.contains_key(&Pair("a", "b"))); assert!(!map.contains_key(&Pair("b", "a"))); } #[test] fn test_string_str() { let s = String::from; let mut map = ordermap! { s("a") => 1, s("b") => 2, s("x") => 3, s("y") => 4, }; assert!(map.contains_key("a")); assert!(!map.contains_key("z")); assert_eq!(map.swap_remove("b"), Some(2)); } ordermap-1.1.0/tests/macros_full_path.rs000064400000000000000000000004031046102023000164630ustar 00000000000000#[test] fn test_create_map() { let _m = ordermap::ordermap! { 1 => 2, 7 => 1, 2 => 2, 3 => 3, }; } #[test] fn test_create_set() { let _s = ordermap::orderset! { 1, 7, 2, 3, }; } ordermap-1.1.0/tests/quick.rs000064400000000000000000000675231046102023000142750ustar 00000000000000use itertools::Itertools; use ordermap::{OrderMap, OrderSet}; use quickcheck::Arbitrary; use quickcheck::Gen; use quickcheck::QuickCheck; use quickcheck::TestResult; use fnv::FnvHasher; use std::hash::{BuildHasher, BuildHasherDefault}; type FnvBuilder = BuildHasherDefault; type OrderMapFnv = OrderMap; use std::cmp::min; use std::collections::HashMap; use std::collections::HashSet; use std::fmt::Debug; use std::hash::Hash; use std::ops::Bound; use std::ops::Deref; use ordermap::map::Entry; use std::collections::hash_map::Entry as StdEntry; fn set<'a, T: 'a, I>(iter: I) -> HashSet where I: IntoIterator, T: Copy + Hash + Eq, { iter.into_iter().copied().collect() } fn ordermap<'a, T: 'a, I>(iter: I) -> OrderMap where I: IntoIterator, T: Copy + Hash + Eq, { OrderMap::from_iter(iter.into_iter().copied().map(|k| (k, ()))) } // Helper macro to allow us to use smaller quickcheck limits under miri. macro_rules! quickcheck_limit { (@as_items $($i:item)*) => ($($i)*); { $( $(#[$m:meta])* fn $fn_name:ident($($arg_name:ident : $arg_ty:ty),*) -> $ret:ty { $($code:tt)* } )* } => ( quickcheck::quickcheck! { @as_items $( #[test] $(#[$m])* fn $fn_name() { fn prop($($arg_name: $arg_ty),*) -> $ret { $($code)* } let mut quickcheck = QuickCheck::new(); if cfg!(miri) { quickcheck = quickcheck .gen(Gen::new(10)) .tests(10) .max_tests(100); } quickcheck.quickcheck(prop as fn($($arg_ty),*) -> $ret); } )* } ) } quickcheck_limit! { fn contains(insert: Vec) -> bool { let mut map = OrderMap::new(); for &key in &insert { map.insert(key, ()); } insert.iter().all(|&key| map.get(&key).is_some()) } fn contains_not(insert: Vec, not: Vec) -> bool { let mut map = OrderMap::new(); for &key in &insert { map.insert(key, ()); } let nots = &set(¬) - &set(&insert); nots.iter().all(|&key| map.get(&key).is_none()) } fn insert_remove(insert: Vec, remove: Vec) -> bool { let mut map = OrderMap::new(); for &key in &insert { map.insert(key, ()); } for &key in &remove { map.swap_remove(&key); } let elements = &set(&insert) - &set(&remove); map.len() == elements.len() && map.iter().count() == elements.len() && elements.iter().all(|k| map.get(k).is_some()) } fn insertion_order(insert: Vec) -> bool { let mut map = OrderMap::new(); for &key in &insert { map.insert(key, ()); } itertools::assert_equal(insert.iter().unique(), map.keys()); true } fn insert_sorted(insert: Vec<(u32, u32)>) -> bool { let mut hmap = HashMap::new(); let mut map = OrderMap::new(); let mut map2 = OrderMap::new(); for &(key, value) in &insert { hmap.insert(key, value); map.insert_sorted(key, value); match map2.entry(key) { Entry::Occupied(e) => *e.into_mut() = value, Entry::Vacant(e) => { e.insert_sorted(value); } } } itertools::assert_equal(hmap.iter().sorted(), &map); itertools::assert_equal(&map, &map2); true } fn insert_sorted_by(insert: Vec<(u32, u32)>) -> bool { let mut hmap = HashMap::new(); let mut map = OrderMap::new(); let mut map2 = OrderMap::new(); for &(key, value) in &insert { hmap.insert(key, value); map.insert_sorted_by(key, value, |key1, _, key2, _| key2.cmp(key1)); match map2.entry(key) { Entry::Occupied(e) => *e.into_mut() = value, Entry::Vacant(e) => { e.insert_sorted_by(value, |key1, _, key2, _| key2.cmp(key1)); } } } let hsorted = hmap.iter().sorted_by(|(key1, _), (key2, _)| key2.cmp(key1)); itertools::assert_equal(hsorted, &map); itertools::assert_equal(&map, &map2); true } fn insert_sorted_by_key(insert: Vec<(i32, u32)>) -> bool { let mut hmap = HashMap::new(); let mut map = OrderMap::new(); let mut map2 = OrderMap::new(); for &(key, value) in &insert { hmap.insert(key, value); map.insert_sorted_by_key(key, value, |&k, _| (k.unsigned_abs(), k)); match map2.entry(key) { Entry::Occupied(e) => *e.into_mut() = value, Entry::Vacant(e) => { e.insert_sorted_by_key(value, |&k, _| (k.unsigned_abs(), k)); } } } let hsorted = hmap.iter().sorted_by_key(|(&k, _)| (k.unsigned_abs(), k)); itertools::assert_equal(hsorted, &map); itertools::assert_equal(&map, &map2); true } fn replace_index(insert: Vec, index: u8, new_key: u8) -> TestResult { if insert.is_empty() { return TestResult::discard(); } let mut map = OrderMap::new(); for &key in &insert { map.insert(key, ()); } let mut index = usize::from(index); if index < map.len() { match map.replace_index(index, new_key) { Ok(old_key) => { assert!(old_key == new_key || !map.contains_key(&old_key)); } Err((i, key)) => { assert_eq!(key, new_key); index = i; } } assert_eq!(map.get_index_of(&new_key), Some(index)); assert_eq!(map.get_index(index), Some((&new_key, &()))); TestResult::passed() } else { TestResult::must_fail(move || map.replace_index(index, new_key)) } } fn vacant_replace_index(insert: Vec, index: u8, new_key: u8) -> TestResult { if insert.is_empty() { return TestResult::discard(); } let mut map = OrderMap::new(); for &key in &insert { map.insert(key, ()); } let index = usize::from(index); if let Some((&old_key, &())) = map.get_index(index) { match map.entry(new_key) { Entry::Occupied(_) => return TestResult::discard(), Entry::Vacant(entry) => { let (replaced_key, entry) = entry.replace_index(index); assert_eq!(old_key, replaced_key); assert_eq!(*entry.key(), new_key); } }; assert!(!map.contains_key(&old_key)); assert_eq!(map.get_index_of(&new_key), Some(index)); assert_eq!(map.get_index(index), Some((&new_key, &()))); TestResult::passed() } else { TestResult::must_fail(move || map.replace_index(index, new_key)) } } fn pop(insert: Vec) -> bool { let mut map = OrderMap::new(); for &key in &insert { map.insert(key, ()); } let mut pops = Vec::new(); while let Some((key, _v)) = map.pop() { pops.push(key); } pops.reverse(); itertools::assert_equal(insert.iter().unique(), &pops); true } fn with_cap(template: Vec<()>) -> bool { let cap = template.len(); let map: OrderMap = OrderMap::with_capacity(cap); println!("wish: {}, got: {} (diff: {})", cap, map.capacity(), map.capacity() as isize - cap as isize); map.capacity() >= cap } fn drain_full(insert: Vec) -> bool { let mut map = OrderMap::new(); for &key in &insert { map.insert(key, ()); } let mut clone = map.clone(); let drained = clone.drain(..); for (key, _) in drained { map.swap_remove(&key); } map.is_empty() } fn drain_bounds(insert: Vec, range: (Bound, Bound)) -> TestResult { let mut map = OrderMap::new(); for &key in &insert { map.insert(key, ()); } // First see if `Vec::drain` is happy with this range. let result = std::panic::catch_unwind(|| { let mut keys: Vec = map.keys().copied().collect(); keys.drain(range); keys }); if let Ok(keys) = result { map.drain(range); // Check that our `drain` matches the same key order. assert!(map.keys().eq(&keys)); // Check that hash lookups all work too. assert!(keys.iter().all(|key| map.contains_key(key))); TestResult::passed() } else { // If `Vec::drain` panicked, so should we. TestResult::must_fail(move || { map.drain(range); }) } } fn extract_if_odd(insert: Vec) -> bool { let mut map = OrderMap::new(); for &x in &insert { map.insert(x, x.to_string()); } let (odd, even): (Vec<_>, Vec<_>) = map.keys().copied().partition(|k| k % 2 == 1); let extracted: Vec<_> = map .extract_if(.., |k, _| k % 2 == 1) .map(|(k, _)| k) .collect(); even.iter().all(|k| map.contains_key(k)) && map.keys().eq(&even) && extracted == odd } fn extract_if_odd_limit(insert: Vec, limit: usize) -> bool { let mut map = OrderMap::new(); for &x in &insert { map.insert(x, x.to_string()); } let limit = limit % (map.len() + 1); let mut i = 0; let (odd, other): (Vec<_>, Vec<_>) = map.keys().copied().partition(|k| { k % 2 == 1 && i < limit && { i += 1; true } }); let extracted: Vec<_> = map .extract_if(.., |k, _| k % 2 == 1) .map(|(k, _)| k) .take(limit) .collect(); other.iter().all(|k| map.contains_key(k)) && map.keys().eq(&other) && extracted == odd } // aka shift_remove fn remove(insert: Vec, remove: Vec) -> bool { let mut map = OrderMap::new(); for &key in &insert { map.insert(key, ()); } for &key in &remove { map.remove(&key); } let elements = &set(&insert) - &set(&remove); // Check that order is preserved after removals let mut iter = map.keys(); for &key in insert.iter().unique() { if elements.contains(&key) { assert_eq!(Some(&key), iter.next()); } } map.len() == elements.len() && map.iter().count() == elements.len() && elements.iter().all(|k| map.get(k).is_some()) } fn indexing(insert: Vec) -> bool { let mut map: OrderMap<_, _> = insert.into_iter().map(|x| (x, x)).collect(); let set: OrderSet<_> = map.keys().copied().collect(); assert_eq!(map.len(), set.len()); for (i, &key) in set.iter().enumerate() { assert_eq!(map.get_index(i), Some((&key, &key))); assert_eq!(set.get_index(i), Some(&key)); assert_eq!(map[i], key); assert_eq!(set[i], key); *map.get_index_mut(i).unwrap().1 >>= 1; map[i] <<= 1; } set.iter().enumerate().all(|(i, &key)| { let value = key & !1; map[&key] == value && map[i] == value }) } // Use `u8` test indices so quickcheck is less likely to go out of bounds. fn set_swap_indices(vec: Vec, a: u8, b: u8) -> TestResult { let mut set = OrderSet::::from_iter(vec); let a = usize::from(a); let b = usize::from(b); if a >= set.len() || b >= set.len() { return TestResult::discard(); } let mut vec = Vec::from_iter(set.iter().cloned()); vec.swap(a, b); set.swap_indices(a, b); // Check both iteration order and hash lookups assert!(set.iter().eq(vec.iter())); assert!(vec.iter().enumerate().all(|(i, x)| { set.get_index_of(x) == Some(i) })); TestResult::passed() } fn map_swap_indices(vec: Vec, from: u8, to: u8) -> TestResult { test_map_swap_indices(vec, from, to, OrderMap::swap_indices) } fn occupied_entry_swap_indices(vec: Vec, from: u8, to: u8) -> TestResult { test_map_swap_indices(vec, from, to, |map, from, to| { let key = map.keys()[from]; match map.entry(key) { Entry::Occupied(entry) => entry.swap_indices(to), _ => unreachable!(), } }) } fn indexed_entry_swap_indices(vec: Vec, from: u8, to: u8) -> TestResult { test_map_swap_indices(vec, from, to, |map, from, to| { map.get_index_entry(from).unwrap().swap_indices(to); }) } fn raw_occupied_entry_swap_indices(vec: Vec, from: u8, to: u8) -> TestResult { use ordermap::map::raw_entry_v1::{RawEntryApiV1, RawEntryMut}; test_map_swap_indices(vec, from, to, |map, from, to| { let key = map.keys()[from]; match map.raw_entry_mut_v1().from_key(&key) { RawEntryMut::Occupied(entry) => entry.swap_indices(to), _ => unreachable!(), } }) } // Use `u8` test indices so quickcheck is less likely to go out of bounds. fn set_move_index(vec: Vec, from: u8, to: u8) -> TestResult { let mut set = OrderSet::::from_iter(vec); let from = usize::from(from); let to = usize::from(to); if from >= set.len() || to >= set.len() { return TestResult::discard(); } let mut vec = Vec::from_iter(set.iter().cloned()); let x = vec.remove(from); vec.insert(to, x); set.move_index(from, to); // Check both iteration order and hash lookups assert!(set.iter().eq(vec.iter())); assert!(vec.iter().enumerate().all(|(i, x)| { set.get_index_of(x) == Some(i) })); TestResult::passed() } fn map_move_index(vec: Vec, from: u8, to: u8) -> TestResult { test_map_move_index(vec, from, to, OrderMap::move_index) } fn occupied_entry_move_index(vec: Vec, from: u8, to: u8) -> TestResult { test_map_move_index(vec, from, to, |map, from, to| { let key = map.keys()[from]; match map.entry(key) { Entry::Occupied(entry) => entry.move_index(to), _ => unreachable!(), } }) } fn indexed_entry_move_index(vec: Vec, from: u8, to: u8) -> TestResult { test_map_move_index(vec, from, to, |map, from, to| { map.get_index_entry(from).unwrap().move_index(to); }) } fn raw_occupied_entry_move_index(vec: Vec, from: u8, to: u8) -> TestResult { use ordermap::map::raw_entry_v1::{RawEntryApiV1, RawEntryMut}; test_map_move_index(vec, from, to, |map, from, to| { let key = map.keys()[from]; match map.raw_entry_mut_v1().from_key(&key) { RawEntryMut::Occupied(entry) => entry.move_index(to), _ => unreachable!(), } }) } fn occupied_entry_shift_insert(vec: Vec, i: u8) -> TestResult { test_map_shift_insert(vec, i, |map, i, key| { match map.entry(key) { Entry::Vacant(entry) => entry.shift_insert(i, ()), _ => unreachable!(), }; }) } fn raw_occupied_entry_shift_insert(vec: Vec, i: u8) -> TestResult { use ordermap::map::raw_entry_v1::{RawEntryApiV1, RawEntryMut}; test_map_shift_insert(vec, i, |map, i, key| { match map.raw_entry_mut_v1().from_key(&key) { RawEntryMut::Vacant(entry) => entry.shift_insert(i, key, ()), _ => unreachable!(), }; }) } } fn test_map_swap_indices(vec: Vec, a: u8, b: u8, swap_indices: F) -> TestResult where F: FnOnce(&mut OrderMap, usize, usize), { let mut map = OrderMap::::from_iter(vec.into_iter().map(|k| (k, ()))); let a = usize::from(a); let b = usize::from(b); if a >= map.len() || b >= map.len() { return TestResult::discard(); } let mut vec = Vec::from_iter(map.keys().copied()); vec.swap(a, b); swap_indices(&mut map, a, b); // Check both iteration order and hash lookups assert!(map.keys().eq(vec.iter())); assert!(vec .iter() .enumerate() .all(|(i, x)| { map.get_index_of(x) == Some(i) })); TestResult::passed() } fn test_map_move_index(vec: Vec, from: u8, to: u8, move_index: F) -> TestResult where F: FnOnce(&mut OrderMap, usize, usize), { let mut map = OrderMap::::from_iter(vec.into_iter().map(|k| (k, ()))); let from = usize::from(from); let to = usize::from(to); if from >= map.len() || to >= map.len() { return TestResult::discard(); } let mut vec = Vec::from_iter(map.keys().copied()); let x = vec.remove(from); vec.insert(to, x); move_index(&mut map, from, to); // Check both iteration order and hash lookups assert!(map.keys().eq(vec.iter())); assert!(vec .iter() .enumerate() .all(|(i, x)| { map.get_index_of(x) == Some(i) })); TestResult::passed() } fn test_map_shift_insert(vec: Vec, i: u8, shift_insert: F) -> TestResult where F: FnOnce(&mut OrderMap, usize, u8), { let mut map = OrderMap::::from_iter(vec.into_iter().map(|k| (k, ()))); let i = usize::from(i); if i >= map.len() { return TestResult::discard(); } let mut vec = Vec::from_iter(map.keys().copied()); let x = vec.pop().unwrap(); vec.insert(i, x); let (last, ()) = map.pop().unwrap(); assert_eq!(x, last); map.shrink_to_fit(); // so we might have to grow and rehash the table shift_insert(&mut map, i, last); // Check both iteration order and hash lookups assert!(map.keys().eq(vec.iter())); assert!(vec .iter() .enumerate() .all(|(i, x)| { map.get_index_of(x) == Some(i) })); TestResult::passed() } use crate::Op::*; #[derive(Copy, Clone, Debug)] enum Op { Add(K, V), Remove(K), AddEntry(K, V), RemoveEntry(K), } impl Arbitrary for Op where K: Arbitrary, V: Arbitrary, { fn arbitrary(g: &mut Gen) -> Self { match u32::arbitrary(g) % 4 { 0 => Add(K::arbitrary(g), V::arbitrary(g)), 1 => AddEntry(K::arbitrary(g), V::arbitrary(g)), 2 => Remove(K::arbitrary(g)), _ => RemoveEntry(K::arbitrary(g)), } } } fn do_ops(ops: &[Op], a: &mut OrderMap, b: &mut HashMap) where K: Hash + Eq + Clone, V: Clone, S: BuildHasher, { for op in ops { match *op { Add(ref k, ref v) => { a.insert(k.clone(), v.clone()); b.insert(k.clone(), v.clone()); } AddEntry(ref k, ref v) => { a.entry(k.clone()).or_insert_with(|| v.clone()); b.entry(k.clone()).or_insert_with(|| v.clone()); } Remove(ref k) => { a.swap_remove(k); b.remove(k); } RemoveEntry(ref k) => { if let Entry::Occupied(ent) = a.entry(k.clone()) { ent.swap_remove_entry(); } if let StdEntry::Occupied(ent) = b.entry(k.clone()) { ent.remove_entry(); } } } //println!("{:?}", a); } } fn assert_maps_equivalent(a: &OrderMap, b: &HashMap) -> bool where K: Hash + Eq + Debug, V: Eq + Debug, { assert_eq!(a.len(), b.len()); assert_eq!(a.iter().next().is_some(), b.iter().next().is_some()); for key in a.keys() { assert!(b.contains_key(key), "b does not contain {:?}", key); } for key in b.keys() { assert!(a.get(key).is_some(), "a does not contain {:?}", key); } for key in a.keys() { assert_eq!(a[key], b[key]); } true } quickcheck_limit! { fn operations_i8(ops: Large>>) -> bool { let mut map = OrderMap::new(); let mut reference = HashMap::new(); do_ops(&ops, &mut map, &mut reference); assert_maps_equivalent(&map, &reference) } fn operations_string(ops: Vec>) -> bool { let mut map = OrderMap::new(); let mut reference = HashMap::new(); do_ops(&ops, &mut map, &mut reference); assert_maps_equivalent(&map, &reference) } fn keys_values(ops: Large>>) -> bool { let mut map = OrderMap::new(); let mut reference = HashMap::new(); do_ops(&ops, &mut map, &mut reference); let mut visit = OrderMap::new(); for (k, v) in map.keys().zip(map.values()) { assert_eq!(&map[k], v); assert!(!visit.contains_key(k)); visit.insert(*k, *v); } assert_eq!(visit.len(), reference.len()); true } fn keys_values_mut(ops: Large>>) -> bool { let mut map = OrderMap::new(); let mut reference = HashMap::new(); do_ops(&ops, &mut map, &mut reference); let mut visit = OrderMap::new(); let keys = Vec::from_iter(map.keys().copied()); for (k, v) in keys.iter().zip(map.values_mut()) { assert_eq!(&reference[k], v); assert!(!visit.contains_key(k)); visit.insert(*k, *v); } assert_eq!(visit.len(), reference.len()); true } fn equality(ops1: Vec>, removes: Vec) -> bool { let mut map = OrderMap::new(); let mut reference = HashMap::new(); do_ops(&ops1, &mut map, &mut reference); let mut ops2 = ops1.clone(); for &r in &removes { if !ops2.is_empty() { let i = r % ops2.len(); ops2.remove(i); } } let mut map2 = OrderMapFnv::default(); let mut reference2 = HashMap::new(); do_ops(&ops2, &mut map2, &mut reference2); map.sort_keys(); map2.sort_keys(); assert_eq!(map == map2, reference == reference2); true } fn retain_ordered(keys: Large>, remove: Large>) -> () { let mut map = ordermap(keys.iter()); let initial_map = map.clone(); // deduplicated in-order input let remove_map = ordermap(remove.iter()); let keys_s = set(keys.iter()); let remove_s = set(remove.iter()); let answer = &keys_s - &remove_s; map.retain(|k, _| !remove_map.contains_key(k)); // check the values assert_eq!(map.len(), answer.len()); for key in &answer { assert!(map.contains_key(key)); } // check the order itertools::assert_equal(map.keys(), initial_map.keys().filter(|&k| !remove_map.contains_key(k))); } fn sort_1(keyvals: Large>) -> () { let mut map: OrderMap<_, _> = OrderMap::from_iter(keyvals.to_vec()); let mut answer = keyvals.0; answer.sort_by_key(|t| t.0); // reverse dedup: Because OrderMap::from_iter keeps the last value for // identical keys answer.reverse(); answer.dedup_by_key(|t| t.0); answer.reverse(); map.sort_by(|k1, _, k2, _| Ord::cmp(k1, k2)); // check it contains all the values it should for &(key, val) in &answer { assert_eq!(map[&key], val); } // check the order let mapv = Vec::from_iter(map); assert_eq!(answer, mapv); } fn sort_2(keyvals: Large>) -> () { let mut map: OrderMap<_, _> = OrderMap::from_iter(keyvals.to_vec()); map.sort_by(|_, v1, _, v2| Ord::cmp(v1, v2)); assert_sorted_by_key(map, |t| t.1); } fn sort_3(keyvals: Large>) -> () { let mut map: OrderMap<_, _> = OrderMap::from_iter(keyvals.to_vec()); map.sort_by_cached_key(|&k, _| std::cmp::Reverse(k)); assert_sorted_by_key(map, |t| std::cmp::Reverse(t.0)); } fn reverse(keyvals: Large>) -> () { let mut map: OrderMap<_, _> = OrderMap::from_iter(keyvals.to_vec()); fn generate_answer(input: &Vec<(i8, i8)>) -> Vec<(i8, i8)> { // to mimic what `OrderMap::from_iter` does: // need to get (A) the unique keys in forward order, and (B) the // last value of each of those keys. // create (A): an iterable that yields the unique keys in ltr order let mut seen_keys = HashSet::new(); let unique_keys_forward = input.iter().filter_map(move |(k, _)| { if seen_keys.contains(k) { None } else { seen_keys.insert(*k); Some(*k) } }); // create (B): a mapping of keys to the last value seen for that key // this is the same as reversing the input and taking the first // value seen for that key! let mut last_val_per_key = HashMap::new(); for &(k, v) in input.iter().rev() { if !last_val_per_key.contains_key(&k) { last_val_per_key.insert(k, v); } } // iterate over the keys in (A) in order, and match each one with // the corresponding last value from (B) let mut ans: Vec<_> = unique_keys_forward .map(|k| (k, *last_val_per_key.get(&k).unwrap())) .collect(); // finally, since this test is testing `.reverse()`, reverse the // answer in-place ans.reverse(); ans } let answer = generate_answer(&keyvals.0); // perform the work map.reverse(); // check it contains all the values it should for &(key, val) in &answer { assert_eq!(map[&key], val); } // check the order let mapv = Vec::from_iter(map); assert_eq!(answer, mapv); } } fn assert_sorted_by_key(iterable: I, key: Key) where I: IntoIterator, Key: Fn(&I::Item) -> X, X: Ord, { let input = Vec::from_iter(iterable); let mut sorted = input.clone(); sorted.sort_by_key(key); assert_eq!(input, sorted); } #[derive(Clone, Debug, Hash, PartialEq, Eq)] struct Alpha(String); impl Deref for Alpha { type Target = String; fn deref(&self) -> &String { &self.0 } } const ALPHABET: &[u8] = b"abcdefghijklmnopqrstuvwxyz"; impl Arbitrary for Alpha { fn arbitrary(g: &mut Gen) -> Self { let len = usize::arbitrary(g) % g.size(); let len = min(len, 16); Alpha( (0..len) .map(|_| ALPHABET[usize::arbitrary(g) % ALPHABET.len()] as char) .collect(), ) } fn shrink(&self) -> Box> { Box::new((**self).shrink().map(Alpha)) } } /// quickcheck Arbitrary adaptor -- make a larger vec #[derive(Clone, Debug)] struct Large(T); impl Deref for Large { type Target = T; fn deref(&self) -> &T { &self.0 } } impl Arbitrary for Large> where T: Arbitrary, { fn arbitrary(g: &mut Gen) -> Self { let len = usize::arbitrary(g) % (g.size() * 10); Large((0..len).map(|_| T::arbitrary(g)).collect()) } fn shrink(&self) -> Box> { Box::new((**self).shrink().map(Large)) } } ordermap-1.1.0/tests/tests.rs000064400000000000000000000007431046102023000143120ustar 00000000000000use ordermap::{ordermap, orderset}; #[test] fn test_sort() { let m = ordermap! { 1 => 2, 7 => 1, 2 => 2, 3 => 3, }; itertools::assert_equal( m.sorted_by(|_k1, v1, _k2, v2| v1.cmp(v2)), vec![(7, 1), (1, 2), (2, 2), (3, 3)], ); } #[test] fn test_sort_set() { let s = orderset! { 1, 7, 2, 3, }; itertools::assert_equal(s.sorted_by(|v1, v2| v1.cmp(v2)), vec![1, 2, 3, 7]); }