tokio-tcp-0.1.3/Cargo.toml.orig010064400007650000024000000014511341460004500145300ustar0000000000000000[package] name = "tokio-tcp" # When releasing to crates.io: # - Update html_root_url. # - Update doc url # - Cargo.toml # - README.md # - Update CHANGELOG.md. # - Create "v0.1.x" git tag. version = "0.1.3" authors = ["Carl Lerche "] license = "MIT" repository = "https://github.com/tokio-rs/tokio" homepage = "https://tokio.rs" documentation = "https://docs.rs/tokio-tcp/0.1.3/tokio_tcp" description = """ TCP bindings for tokio. """ categories = ["asynchronous"] [dependencies] tokio-io = { version = "0.1.6", path = "../tokio-io" } tokio-reactor = { version = "0.1.1", path = "../tokio-reactor" } bytes = "0.4" mio = "0.6.14" iovec = "0.1" futures = "0.1.19" [dev-dependencies] env_logger = { version = "0.5", default-features = false } tokio = { version = "0.1.13", path = ".." } tokio-tcp-0.1.3/Cargo.toml0000644000000022700000000000000110040ustar00# THIS FILE IS AUTOMATICALLY GENERATED BY CARGO # # When uploading crates to the registry Cargo will automatically # "normalize" Cargo.toml files for maximal compatibility # with all versions of Cargo and also rewrite `path` dependencies # to registry (e.g. crates.io) dependencies # # If you believe there's an error in this file please file an # issue against the rust-lang/cargo repository. If you're # editing this file be aware that the upstream Cargo.toml # will likely look very different (and much more reasonable) [package] name = "tokio-tcp" version = "0.1.3" authors = ["Carl Lerche "] description = "TCP bindings for tokio.\n" homepage = "https://tokio.rs" documentation = "https://docs.rs/tokio-tcp/0.1.3/tokio_tcp" categories = ["asynchronous"] license = "MIT" repository = "https://github.com/tokio-rs/tokio" [dependencies.bytes] version = "0.4" [dependencies.futures] version = "0.1.19" [dependencies.iovec] version = "0.1" [dependencies.mio] version = "0.6.14" [dependencies.tokio-io] version = "0.1.6" [dependencies.tokio-reactor] version = "0.1.1" [dev-dependencies.env_logger] version = "0.5" default-features = false [dev-dependencies.tokio] version = "0.1.13" tokio-tcp-0.1.3/CHANGELOG.md010064400007650000024000000004471341457741600134750ustar0000000000000000# 0.1.3 (January 6, 2019) * Deprecate `TcpStream::try_clone()` (#824). * Add examples to TcpListener and TcpStream API docs (#775). # 0.1.2 (September 27, 2018) * Documentation tweaks # 0.1.1 (August 6, 2018) * Add `TcpStream::try_clone` (#448) # 0.1.0 (March 23, 2018) * Initial release tokio-tcp-0.1.3/LICENSE010064400007650000024000000020461341457741600126660ustar0000000000000000Copyright (c) 2019 Tokio Contributors Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. tokio-tcp-0.1.3/README.md010064400007650000024000000005651341457741600131440ustar0000000000000000# tokio-tcp TCP bindings for `tokio`. [Documentation](https://docs.rs/tokio-tcp/0.1.3/tokio_tcp) ## License This project is licensed under the [MIT license](./LICENSE). ### Contribution Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in Tokio by you, shall be licensed as MIT, without any additional terms or conditions. tokio-tcp-0.1.3/src/incoming.rs010064400007650000024000000013411337762053300146130ustar0000000000000000use super::TcpListener; use super::TcpStream; use std::io; use futures::stream::Stream; use futures::{Poll, Async}; /// Stream returned by the `TcpListener::incoming` function representing the /// stream of sockets received from a listener. #[must_use = "streams do nothing unless polled"] #[derive(Debug)] pub struct Incoming { inner: TcpListener, } impl Incoming { pub(crate) fn new(listener: TcpListener) -> Incoming { Incoming { inner: listener } } } impl Stream for Incoming { type Item = TcpStream; type Error = io::Error; fn poll(&mut self) -> Poll, io::Error> { let (socket, _) = try_ready!(self.inner.poll_accept()); Ok(Async::Ready(Some(socket))) } } tokio-tcp-0.1.3/src/lib.rs010064400007650000024000000025431341457741600135660ustar0000000000000000#![doc(html_root_url = "https://docs.rs/tokio-tcp/0.1.3")] #![deny(missing_docs, warnings, missing_debug_implementations)] //! TCP bindings for `tokio`. //! //! This module contains the TCP networking types, similar to the standard //! library, which can be used to implement networking protocols. //! //! Connecting to an address, via TCP, can be done using [`TcpStream`]'s //! [`connect`] method, which returns [`ConnectFuture`]. `ConnectFuture` //! implements a future which returns a `TcpStream`. //! //! To listen on an address [`TcpListener`] can be used. `TcpListener`'s //! [`incoming`][incoming_method] method can be used to accept new connections. //! It return the [`Incoming`] struct, which implements a stream which returns //! `TcpStream`s. //! //! [`TcpStream`]: struct.TcpStream.html //! [`connect`]: struct.TcpStream.html#method.connect //! [`ConnectFuture`]: struct.ConnectFuture.html //! [`TcpListener`]: struct.TcpListener.html //! [incoming_method]: struct.TcpListener.html#method.incoming //! [`Incoming`]: struct.Incoming.html extern crate bytes; #[macro_use] extern crate futures; extern crate iovec; extern crate mio; extern crate tokio_io; extern crate tokio_reactor; mod incoming; mod listener; mod stream; pub use self::incoming::Incoming; pub use self::listener::TcpListener; pub use self::stream::TcpStream; pub use self::stream::ConnectFuture; tokio-tcp-0.1.3/src/listener.rs010064400007650000024000000317561337762053300146520ustar0000000000000000use super::Incoming; use super::TcpStream; use std::fmt; use std::io; use std::net::{self, SocketAddr}; use futures::{Poll, Async}; use mio; use tokio_reactor::{Handle, PollEvented}; /// An I/O object representing a TCP socket listening for incoming connections. /// /// This object can be converted into a stream of incoming connections for /// various forms of processing. /// /// # Examples /// /// ```no_run /// extern crate tokio; /// extern crate futures; /// /// use futures::stream::Stream; /// use std::net::SocketAddr; /// use tokio::net::{TcpListener, TcpStream}; /// /// fn process_socket(socket: TcpStream) { /// // ... /// } /// /// fn main() -> Result<(), Box> { /// let addr = "127.0.0.1:8080".parse::()?; /// let listener = TcpListener::bind(&addr)?; /// /// // accept connections and process them /// tokio::run(listener.incoming() /// .map_err(|e| eprintln!("failed to accept socket; error = {:?}", e)) /// .for_each(|socket| { /// process_socket(socket); /// Ok(()) /// }) /// ); /// Ok(()) /// } /// ``` pub struct TcpListener { io: PollEvented, } impl TcpListener { /// Create a new TCP listener associated with this event loop. /// /// The TCP listener will bind to the provided `addr` address, if available. /// If the result is `Ok`, the socket has successfully bound. /// /// # Examples /// /// ``` /// # extern crate tokio; /// use std::net::SocketAddr; /// use tokio::net::TcpListener; /// /// # fn main() -> Result<(), Box> { /// let addr = "127.0.0.1:8080".parse::()?; /// let listener = TcpListener::bind(&addr)?; /// # Ok(()) /// # } /// ``` pub fn bind(addr: &SocketAddr) -> io::Result { let l = mio::net::TcpListener::bind(addr)?; Ok(TcpListener::new(l)) } #[deprecated(since = "0.1.2", note = "use poll_accept instead")] #[doc(hidden)] pub fn accept(&mut self) -> io::Result<(TcpStream, SocketAddr)> { match self.poll_accept()? { Async::Ready(ret) => Ok(ret), Async::NotReady => Err(io::ErrorKind::WouldBlock.into()), } } /// Attempt to accept a connection and create a new connected `TcpStream` if /// successful. /// /// Note that typically for simple usage it's easier to treat incoming /// connections as a `Stream` of `TcpStream`s with the `incoming` method /// below. /// /// # Return /// /// On success, returns `Ok(Async::Ready((socket, addr)))`. /// /// If the listener is not ready to accept, the method returns /// `Ok(Async::NotReady)` and arranges for the current task to receive a /// notification when the listener becomes ready to accept. /// /// # Panics /// /// This function will panic if called from outside of a task context. /// /// # Examples /// /// ```no_run /// # extern crate tokio; /// # extern crate futures; /// use std::net::SocketAddr; /// use tokio::net::TcpListener; /// use futures::Async; /// /// # fn main() -> Result<(), Box> { /// let addr = "127.0.0.1:8080".parse::()?; /// let mut listener = TcpListener::bind(&addr)?; /// match listener.poll_accept() { /// Ok(Async::Ready((_socket, addr))) => println!("listener ready to accept: {:?}", addr), /// Ok(Async::NotReady) => println!("listener not ready to accept!"), /// Err(e) => eprintln!("got an error: {}", e), /// } /// # Ok(()) /// # } /// ``` pub fn poll_accept(&mut self) -> Poll<(TcpStream, SocketAddr), io::Error> { let (io, addr) = try_ready!(self.poll_accept_std()); let io = mio::net::TcpStream::from_stream(io)?; let io = TcpStream::new(io); Ok((io, addr).into()) } #[deprecated(since = "0.1.2", note = "use poll_accept_std instead")] #[doc(hidden)] pub fn accept_std(&mut self) -> io::Result<(net::TcpStream, SocketAddr)> { match self.poll_accept_std()? { Async::Ready(ret) => Ok(ret), Async::NotReady => Err(io::ErrorKind::WouldBlock.into()), } } /// Attempt to accept a connection and create a new connected `TcpStream` if /// successful. /// /// This function is the same as `accept` above except that it returns a /// `std::net::TcpStream` instead of a `tokio::net::TcpStream`. This in turn /// can then allow for the TCP stream to be associated with a different /// reactor than the one this `TcpListener` is associated with. /// /// # Return /// /// On success, returns `Ok(Async::Ready((socket, addr)))`. /// /// If the listener is not ready to accept, the method returns /// `Ok(Async::NotReady)` and arranges for the current task to receive a /// notification when the listener becomes ready to accept. /// /// # Panics /// /// This function will panic if called from outside of a task context. /// /// # Examples /// /// ```no_run /// # extern crate tokio; /// # extern crate futures; /// use std::net::SocketAddr; /// use tokio::net::TcpListener; /// use futures::Async; /// /// # fn main() -> Result<(), Box> { /// let addr = "127.0.0.1:8080".parse::()?; /// let mut listener = TcpListener::bind(&addr)?; /// match listener.poll_accept_std() { /// Ok(Async::Ready((_socket, addr))) => println!("listener ready to accept: {:?}", addr), /// Ok(Async::NotReady) => println!("listener not ready to accept!"), /// Err(e) => eprintln!("got an error: {}", e), /// } /// # Ok(()) /// # } /// ``` pub fn poll_accept_std(&mut self) -> Poll<(net::TcpStream, SocketAddr), io::Error> { try_ready!(self.io.poll_read_ready(mio::Ready::readable())); match self.io.get_ref().accept_std() { Ok(pair) => Ok(pair.into()), Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { self.io.clear_read_ready(mio::Ready::readable())?; Ok(Async::NotReady) } Err(e) => Err(e), } } /// Create a new TCP listener from the standard library's TCP listener. /// /// This method can be used when the `Handle::tcp_listen` method isn't /// sufficient because perhaps some more configuration is needed in terms of /// before the calls to `bind` and `listen`. /// /// This API is typically paired with the `net2` crate and the `TcpBuilder` /// type to build up and customize a listener before it's shipped off to the /// backing event loop. This allows configuration of options like /// `SO_REUSEPORT`, binding to multiple addresses, etc. /// /// The `addr` argument here is one of the addresses that `listener` is /// bound to and the listener will only be guaranteed to accept connections /// of the same address type currently. /// /// Finally, the `handle` argument is the event loop that this listener will /// be bound to. /// Use [`Handle::default()`] to lazily bind to an event loop, just like `bind` does. /// /// The platform specific behavior of this function looks like: /// /// * On Unix, the socket is placed into nonblocking mode and connections /// can be accepted as normal /// /// * On Windows, the address is stored internally and all future accepts /// will only be for the same IP version as `addr` specified. That is, if /// `addr` is an IPv4 address then all sockets accepted will be IPv4 as /// well (same for IPv6). /// /// [`Handle::default()`]: ../reactor/struct.Handle.html /// # Examples /// /// ```no_run /// # extern crate tokio; /// # extern crate tokio_reactor; /// use tokio::net::TcpListener; /// use std::net::TcpListener as StdTcpListener; /// use tokio::reactor::Handle; /// /// # fn main() -> Result<(), Box> { /// let std_listener = StdTcpListener::bind("127.0.0.1:8080")?; /// let listener = TcpListener::from_std(std_listener, &Handle::default())?; /// # Ok(()) /// # } /// ``` pub fn from_std(listener: net::TcpListener, handle: &Handle) -> io::Result { let io = mio::net::TcpListener::from_std(listener)?; let io = PollEvented::new_with_handle(io, handle)?; Ok(TcpListener { io }) } fn new(listener: mio::net::TcpListener) -> TcpListener { let io = PollEvented::new(listener); TcpListener { io } } /// Returns the local address that this listener is bound to. /// /// This can be useful, for example, when binding to port 0 to figure out /// which port was actually bound. /// /// # Examples /// /// ``` /// # extern crate tokio; /// use tokio::net::TcpListener; /// use std::net::{Ipv4Addr, SocketAddr, SocketAddrV4}; /// /// # fn main() -> Result<(), Box> { /// let addr = "127.0.0.1:8080".parse::()?; /// let listener = TcpListener::bind(&addr)?; /// assert_eq!(listener.local_addr()?, /// SocketAddr::V4(SocketAddrV4::new(Ipv4Addr::new(127, 0, 0, 1), 8080))); /// # Ok(()) /// # } /// ``` pub fn local_addr(&self) -> io::Result { self.io.get_ref().local_addr() } /// Consumes this listener, returning a stream of the sockets this listener /// accepts. /// /// This method returns an implementation of the `Stream` trait which /// resolves to the sockets the are accepted on this listener. /// /// # Errors /// /// Note that accepting a connection can lead to various errors and not all of them are /// necessarily fatal ‒ for example having too many open file descriptors or the other side /// closing the connection while it waits in an accept queue. These would terminate the stream /// if not handled in any way. /// /// If aiming for production, decision what to do about them must be made. The /// [`tk-listen`](https://crates.io/crates/tk-listen) crate might be of some help. /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use tokio::net::TcpListener; /// use futures::stream::Stream; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box> { /// let addr = "127.0.0.1:8080".parse::()?; /// let listener = TcpListener::bind(&addr)?; /// /// listener.incoming() /// .map_err(|e| eprintln!("failed to accept stream; error = {:?}", e)) /// .for_each(|_socket| { /// println!("new socket!"); /// Ok(()) /// }); /// # Ok(()) /// # } /// ``` pub fn incoming(self) -> Incoming { Incoming::new(self) } /// Gets the value of the `IP_TTL` option for this socket. /// /// For more information about this option, see [`set_ttl`]. /// /// [`set_ttl`]: #method.set_ttl /// /// # Examples /// /// ``` /// # extern crate tokio; /// use tokio::net::TcpListener; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box> { /// let addr = "127.0.0.1:8080".parse::()?; /// let listener = TcpListener::bind(&addr)?; /// listener.set_ttl(100).expect("could not set TTL"); /// assert_eq!(listener.ttl()?, 100); /// # Ok(()) /// # } /// ``` pub fn ttl(&self) -> io::Result { self.io.get_ref().ttl() } /// Sets the value for the `IP_TTL` option on this socket. /// /// This value sets the time-to-live field that is used in every packet sent /// from this socket. /// /// # Examples /// /// ``` /// # extern crate tokio; /// use tokio::net::TcpListener; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box> { /// let addr = "127.0.0.1:8080".parse::()?; /// let listener = TcpListener::bind(&addr)?; /// listener.set_ttl(100).expect("could not set TTL"); /// # Ok(()) /// # } /// ``` pub fn set_ttl(&self, ttl: u32) -> io::Result<()> { self.io.get_ref().set_ttl(ttl) } } impl fmt::Debug for TcpListener { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.io.get_ref().fmt(f) } } #[cfg(unix)] mod sys { use std::os::unix::prelude::*; use super::TcpListener; impl AsRawFd for TcpListener { fn as_raw_fd(&self) -> RawFd { self.io.get_ref().as_raw_fd() } } } #[cfg(windows)] mod sys { // TODO: let's land these upstream with mio and then we can add them here. // // use std::os::windows::prelude::*; // use super::{TcpListener; // // impl AsRawHandle for TcpListener { // fn as_raw_handle(&self) -> RawHandle { // self.listener.io().as_raw_handle() // } // } } tokio-tcp-0.1.3/src/stream.rs010064400007650000024000001012101341446366400143010ustar0000000000000000use std::fmt; use std::io::{self, Read, Write}; use std::mem; use std::net::{self, SocketAddr, Shutdown}; use std::time::Duration; use bytes::{Buf, BufMut}; use futures::{Future, Poll, Async}; use iovec::IoVec; use mio; use tokio_io::{AsyncRead, AsyncWrite}; use tokio_reactor::{Handle, PollEvented}; /// An I/O object representing a TCP stream connected to a remote endpoint. /// /// A TCP stream can either be created by connecting to an endpoint, via the /// [`connect`] method, or by [accepting] a connection from a [listener]. /// /// [`connect`]: struct.TcpStream.html#method.connect /// [accepting]: struct.TcpListener.html#method.accept /// [listener]: struct.TcpListener.html /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use futures::Future; /// use tokio::io::AsyncWrite; /// use tokio::net::TcpStream; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box> { /// let addr = "127.0.0.1:34254".parse::()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|mut stream| { /// // Attempt to write bytes asynchronously to the stream /// stream.poll_write(&[1]); /// }); /// # Ok(()) /// # } /// ``` pub struct TcpStream { io: PollEvented, } /// Future returned by `TcpStream::connect` which will resolve to a `TcpStream` /// when the stream is connected. #[must_use = "futures do nothing unless polled"] #[derive(Debug)] pub struct ConnectFuture { inner: ConnectFutureState, } #[must_use = "futures do nothing unless polled"] #[derive(Debug)] enum ConnectFutureState { Waiting(TcpStream), Error(io::Error), Empty, } impl TcpStream { /// Create a new TCP stream connected to the specified address. /// /// This function will create a new TCP socket and attempt to connect it to /// the `addr` provided. The returned future will be resolved once the /// stream has successfully connected, or it will return an error if one /// occurs. /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use futures::Future; /// use tokio::net::TcpStream; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box> { /// let addr = "127.0.0.1:34254".parse::()?; /// let stream = TcpStream::connect(&addr) /// .map(|stream| /// println!("successfully connected to {}", stream.local_addr().unwrap())); /// # Ok(()) /// # } /// ``` pub fn connect(addr: &SocketAddr) -> ConnectFuture { use self::ConnectFutureState::*; let inner = match mio::net::TcpStream::connect(addr) { Ok(tcp) => Waiting(TcpStream::new(tcp)), Err(e) => Error(e), }; ConnectFuture { inner } } pub(crate) fn new(connected: mio::net::TcpStream) -> TcpStream { let io = PollEvented::new(connected); TcpStream { io } } /// Create a new `TcpStream` from a `net::TcpStream`. /// /// This function will convert a TCP stream created by the standard library /// to a TCP stream ready to be used with the provided event loop handle. /// Use `Handle::default()` to lazily bind to an event loop, just like `connect` does. /// /// # Examples /// /// ```no_run /// # extern crate tokio; /// # extern crate tokio_reactor; /// use tokio::net::TcpStream; /// use std::net::TcpStream as StdTcpStream; /// use tokio_reactor::Handle; /// /// # fn main() -> Result<(), Box> { /// let std_stream = StdTcpStream::connect("127.0.0.1:34254")?; /// let stream = TcpStream::from_std(std_stream, &Handle::default())?; /// # Ok(()) /// # } /// ``` pub fn from_std(stream: net::TcpStream, handle: &Handle) -> io::Result { let io = mio::net::TcpStream::from_stream(stream)?; let io = PollEvented::new_with_handle(io, handle)?; Ok(TcpStream { io }) } /// Creates a new `TcpStream` from the pending socket inside the given /// `std::net::TcpStream`, connecting it to the address specified. /// /// This constructor allows configuring the socket before it's actually /// connected, and this function will transfer ownership to the returned /// `TcpStream` if successful. An unconnected `TcpStream` can be created /// with the `net2::TcpBuilder` type (and also configured via that route). /// /// The platform specific behavior of this function looks like: /// /// * On Unix, the socket is placed into nonblocking mode and then a /// `connect` call is issued. /// /// * On Windows, the address is stored internally and the connect operation /// is issued when the returned `TcpStream` is registered with an event /// loop. Note that on Windows you must `bind` a socket before it can be /// connected, so if a custom `TcpBuilder` is used it should be bound /// (perhaps to `INADDR_ANY`) before this method is called. pub fn connect_std(stream: net::TcpStream, addr: &SocketAddr, handle: &Handle) -> ConnectFuture { use self::ConnectFutureState::*; let io = mio::net::TcpStream::connect_stream(stream, addr) .and_then(|io| PollEvented::new_with_handle(io, handle)); let inner = match io { Ok(io) => Waiting(TcpStream { io }), Err(e) => Error(e), }; ConnectFuture { inner: inner } } /// Check the TCP stream's read readiness state. /// /// The mask argument allows specifying what readiness to notify on. This /// can be any value, including platform specific readiness, **except** /// `writable`. HUP is always implicitly included on platforms that support /// it. /// /// If the resource is not ready for a read then `Async::NotReady` is /// returned and the current task is notified once a new event is received. /// /// The stream will remain in a read-ready state until calls to `poll_read` /// return `NotReady`. /// /// # Panics /// /// This function panics if: /// /// * `ready` includes writable. /// * called from outside of a task context. /// /// # Examples /// /// ``` /// # extern crate mio; /// # extern crate tokio; /// # extern crate futures; /// use mio::Ready; /// use futures::Async; /// use futures::Future; /// use tokio::net::TcpStream; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box> { /// let addr = "127.0.0.1:34254".parse::()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|stream| { /// match stream.poll_read_ready(Ready::readable()) { /// Ok(Async::Ready(_)) => println!("read ready"), /// Ok(Async::NotReady) => println!("not read ready"), /// Err(e) => eprintln!("got error: {}", e), /// } /// }); /// # Ok(()) /// # } /// ``` pub fn poll_read_ready(&self, mask: mio::Ready) -> Poll { self.io.poll_read_ready(mask) } /// Check the TCP stream's write readiness state. /// /// This always checks for writable readiness and also checks for HUP /// readiness on platforms that support it. /// /// If the resource is not ready for a write then `Async::NotReady` is /// returned and the current task is notified once a new event is received. /// /// The I/O resource will remain in a write-ready state until calls to /// `poll_write` return `NotReady`. /// /// # Panics /// /// This function panics if called from outside of a task context. /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use futures::Async; /// use futures::Future; /// use tokio::net::TcpStream; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box> { /// let addr = "127.0.0.1:34254".parse::()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|stream| { /// match stream.poll_write_ready() { /// Ok(Async::Ready(_)) => println!("write ready"), /// Ok(Async::NotReady) => println!("not write ready"), /// Err(e) => eprintln!("got error: {}", e), /// } /// }); /// # Ok(()) /// # } /// ``` pub fn poll_write_ready(&self) -> Poll { self.io.poll_write_ready() } /// Returns the local address that this stream is bound to. /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use tokio::net::TcpStream; /// use futures::Future; /// use std::net::{Ipv4Addr, SocketAddr, SocketAddrV4}; /// /// # fn main() -> Result<(), Box> { /// let addr = "127.0.0.1:8080".parse::()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|stream| { /// assert_eq!(stream.local_addr().unwrap(), /// SocketAddr::V4(SocketAddrV4::new(Ipv4Addr::new(127, 0, 0, 1), 8080))); /// }); /// # Ok(()) /// # } /// ``` pub fn local_addr(&self) -> io::Result { self.io.get_ref().local_addr() } /// Returns the remote address that this stream is connected to. /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use tokio::net::TcpStream; /// use futures::Future; /// use std::net::{Ipv4Addr, SocketAddr, SocketAddrV4}; /// /// # fn main() -> Result<(), Box> { /// let addr = "127.0.0.1:8080".parse::()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|stream| { /// assert_eq!(stream.peer_addr().unwrap(), /// SocketAddr::V4(SocketAddrV4::new(Ipv4Addr::new(127, 0, 0, 1), 8080))); /// }); /// # Ok(()) /// # } /// ``` pub fn peer_addr(&self) -> io::Result { self.io.get_ref().peer_addr() } #[deprecated(since = "0.1.2", note = "use poll_peek instead")] #[doc(hidden)] pub fn peek(&mut self, buf: &mut [u8]) -> io::Result { match self.poll_peek(buf)? { Async::Ready(n) => Ok(n), Async::NotReady => Err(io::ErrorKind::WouldBlock.into()), } } /// Receives data on the socket from the remote address to which it is /// connected, without removing that data from the queue. On success, /// returns the number of bytes peeked. /// /// Successive calls return the same data. This is accomplished by passing /// `MSG_PEEK` as a flag to the underlying recv system call. /// /// # Return /// /// On success, returns `Ok(Async::Ready(num_bytes_read))`. /// /// If no data is available for reading, the method returns /// `Ok(Async::NotReady)` and arranges for the current task to receive a /// notification when the socket becomes readable or is closed. /// /// # Panics /// /// This function will panic if called from outside of a task context. /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use tokio::net::TcpStream; /// use futures::Async; /// use futures::Future; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box> { /// let addr = "127.0.0.1:8080".parse::()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|mut stream| { /// let mut buf = [0; 10]; /// match stream.poll_peek(&mut buf) { /// Ok(Async::Ready(len)) => println!("read {} bytes", len), /// Ok(Async::NotReady) => println!("no data available"), /// Err(e) => eprintln!("got error: {}", e), /// } /// }); /// # Ok(()) /// # } /// ``` pub fn poll_peek(&mut self, buf: &mut [u8]) -> Poll { try_ready!(self.io.poll_read_ready(mio::Ready::readable())); match self.io.get_ref().peek(buf) { Ok(ret) => Ok(ret.into()), Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { self.io.clear_read_ready(mio::Ready::readable())?; Ok(Async::NotReady) } Err(e) => Err(e), } } /// Shuts down the read, write, or both halves of this connection. /// /// This function will cause all pending and future I/O on the specified /// portions to return immediately with an appropriate value (see the /// documentation of `Shutdown`). /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use tokio::net::TcpStream; /// use futures::Future; /// use std::net::{Shutdown, SocketAddr}; /// /// # fn main() -> Result<(), Box> { /// let addr = "127.0.0.1:8080".parse::()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|stream| { /// stream.shutdown(Shutdown::Both) /// }); /// # Ok(()) /// # } /// ``` pub fn shutdown(&self, how: Shutdown) -> io::Result<()> { self.io.get_ref().shutdown(how) } /// Gets the value of the `TCP_NODELAY` option on this socket. /// /// For more information about this option, see [`set_nodelay`]. /// /// [`set_nodelay`]: #method.set_nodelay /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use tokio::net::TcpStream; /// use futures::Future; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box> { /// let addr = "127.0.0.1:8080".parse::()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|stream| { /// stream.set_nodelay(true).expect("set_nodelay call failed");; /// assert_eq!(stream.nodelay().unwrap_or(false), true); /// }); /// # Ok(()) /// # } /// ``` pub fn nodelay(&self) -> io::Result { self.io.get_ref().nodelay() } /// Sets the value of the `TCP_NODELAY` option on this socket. /// /// If set, this option disables the Nagle algorithm. This means that /// segments are always sent as soon as possible, even if there is only a /// small amount of data. When not set, data is buffered until there is a /// sufficient amount to send out, thereby avoiding the frequent sending of /// small packets. /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use tokio::net::TcpStream; /// use futures::Future; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box> { /// let addr = "127.0.0.1:8080".parse::()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|stream| { /// stream.set_nodelay(true).expect("set_nodelay call failed"); /// }); /// # Ok(()) /// # } /// ``` pub fn set_nodelay(&self, nodelay: bool) -> io::Result<()> { self.io.get_ref().set_nodelay(nodelay) } /// Gets the value of the `SO_RCVBUF` option on this socket. /// /// For more information about this option, see [`set_recv_buffer_size`]. /// /// [`set_recv_buffer_size`]: #tymethod.set_recv_buffer_size /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use tokio::net::TcpStream; /// use futures::Future; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box> { /// let addr = "127.0.0.1:8080".parse::()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|stream| { /// stream.set_recv_buffer_size(100).expect("set_recv_buffer_size failed"); /// assert_eq!(stream.recv_buffer_size().unwrap_or(0), 100); /// }); /// # Ok(()) /// # } /// ``` pub fn recv_buffer_size(&self) -> io::Result { self.io.get_ref().recv_buffer_size() } /// Sets the value of the `SO_RCVBUF` option on this socket. /// /// Changes the size of the operating system's receive buffer associated /// with the socket. /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use tokio::net::TcpStream; /// use futures::Future; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box> { /// let addr = "127.0.0.1:8080".parse::()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|stream| { /// stream.set_recv_buffer_size(100).expect("set_recv_buffer_size failed"); /// }); /// # Ok(()) /// # } /// ``` pub fn set_recv_buffer_size(&self, size: usize) -> io::Result<()> { self.io.get_ref().set_recv_buffer_size(size) } /// Gets the value of the `SO_SNDBUF` option on this socket. /// /// For more information about this option, see [`set_send_buffer`]. /// /// [`set_send_buffer`]: #tymethod.set_send_buffer /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use tokio::net::TcpStream; /// use futures::Future; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box> { /// let addr = "127.0.0.1:8080".parse::()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|stream| { /// stream.set_send_buffer_size(100).expect("set_send_buffer_size failed"); /// assert_eq!(stream.send_buffer_size().unwrap_or(0), 100); /// }); /// # Ok(()) /// # } /// ``` pub fn send_buffer_size(&self) -> io::Result { self.io.get_ref().send_buffer_size() } /// Sets the value of the `SO_SNDBUF` option on this socket. /// /// Changes the size of the operating system's send buffer associated with /// the socket. /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use tokio::net::TcpStream; /// use futures::Future; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box> { /// let addr = "127.0.0.1:8080".parse::()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|stream| { /// stream.set_send_buffer_size(100).expect("set_send_buffer_size failed"); /// }); /// # Ok(()) /// # } /// ``` pub fn set_send_buffer_size(&self, size: usize) -> io::Result<()> { self.io.get_ref().set_send_buffer_size(size) } /// Returns whether keepalive messages are enabled on this socket, and if so /// the duration of time between them. /// /// For more information about this option, see [`set_keepalive`]. /// /// [`set_keepalive`]: #tymethod.set_keepalive /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use tokio::net::TcpStream; /// use futures::Future; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box> { /// let addr = "127.0.0.1:8080".parse::()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|stream| { /// stream.set_keepalive(None).expect("set_keepalive failed"); /// assert_eq!(stream.keepalive().unwrap(), None); /// }); /// # Ok(()) /// # } /// ``` pub fn keepalive(&self) -> io::Result> { self.io.get_ref().keepalive() } /// Sets whether keepalive messages are enabled to be sent on this socket. /// /// On Unix, this option will set the `SO_KEEPALIVE` as well as the /// `TCP_KEEPALIVE` or `TCP_KEEPIDLE` option (depending on your platform). /// On Windows, this will set the `SIO_KEEPALIVE_VALS` option. /// /// If `None` is specified then keepalive messages are disabled, otherwise /// the duration specified will be the time to remain idle before sending a /// TCP keepalive probe. /// /// Some platforms specify this value in seconds, so sub-second /// specifications may be omitted. /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use tokio::net::TcpStream; /// use futures::Future; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box> { /// let addr = "127.0.0.1:8080".parse::()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|stream| { /// stream.set_keepalive(None).expect("set_keepalive failed"); /// }); /// # Ok(()) /// # } /// ``` pub fn set_keepalive(&self, keepalive: Option) -> io::Result<()> { self.io.get_ref().set_keepalive(keepalive) } /// Gets the value of the `IP_TTL` option for this socket. /// /// For more information about this option, see [`set_ttl`]. /// /// [`set_ttl`]: #tymethod.set_ttl /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use tokio::net::TcpStream; /// use futures::Future; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box> { /// let addr = "127.0.0.1:8080".parse::()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|stream| { /// stream.set_ttl(100).expect("set_ttl failed"); /// assert_eq!(stream.ttl().unwrap_or(0), 100); /// }); /// # Ok(()) /// # } /// ``` pub fn ttl(&self) -> io::Result { self.io.get_ref().ttl() } /// Sets the value for the `IP_TTL` option on this socket. /// /// This value sets the time-to-live field that is used in every packet sent /// from this socket. /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use tokio::net::TcpStream; /// use futures::Future; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box> { /// let addr = "127.0.0.1:8080".parse::()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|stream| { /// stream.set_ttl(100).expect("set_ttl failed"); /// }); /// # Ok(()) /// # } /// ``` pub fn set_ttl(&self, ttl: u32) -> io::Result<()> { self.io.get_ref().set_ttl(ttl) } /// Reads the linger duration for this socket by getting the `SO_LINGER` /// option. /// /// For more information about this option, see [`set_linger`]. /// /// [`set_linger`]: #tymethod.set_linger /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use tokio::net::TcpStream; /// use futures::Future; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box> { /// let addr = "127.0.0.1:8080".parse::()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|stream| { /// stream.set_linger(None).expect("set_linger failed"); /// assert_eq!(stream.linger().unwrap(), None); /// }); /// # Ok(()) /// # } /// ``` pub fn linger(&self) -> io::Result> { self.io.get_ref().linger() } /// Sets the linger duration of this socket by setting the `SO_LINGER` /// option. /// /// This option controls the action taken when a stream has unsent messages /// and the stream is closed. If `SO_LINGER` is set, the system /// shall block the process until it can transmit the data or until the /// time expires. /// /// If `SO_LINGER` is not specified, and the stream is closed, the system /// handles the call in a way that allows the process to continue as quickly /// as possible. /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use tokio::net::TcpStream; /// use futures::Future; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box> { /// let addr = "127.0.0.1:8080".parse::()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|stream| { /// stream.set_linger(None).expect("set_linger failed"); /// }); /// # Ok(()) /// # } /// ``` pub fn set_linger(&self, dur: Option) -> io::Result<()> { self.io.get_ref().set_linger(dur) } /// Creates a new independently owned handle to the underlying socket. /// /// The returned `TcpStream` is a reference to the same stream that this /// object references. Both handles will read and write the same stream of /// data, and options set on one stream will be propagated to the other /// stream. /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use tokio::net::TcpStream; /// use futures::Future; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box> { /// let addr = "127.0.0.1:8080".parse::()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|stream| { /// let clone = stream.try_clone().unwrap(); /// }); /// # Ok(()) /// # } /// ``` #[deprecated(since = "0.1.14", note = "use `split()` instead")] #[doc(hidden)] pub fn try_clone(&self) -> io::Result { // Rationale for deprecation: // - https://github.com/tokio-rs/tokio/pull/824 // - https://github.com/tokio-rs/tokio/issues/774#issuecomment-451059317 let msg = "`TcpStream::split()` is deprecated because it doesn't work as intended"; Err(io::Error::new(io::ErrorKind::Other, msg)) } } // ===== impl Read / Write ===== impl Read for TcpStream { fn read(&mut self, buf: &mut [u8]) -> io::Result { self.io.read(buf) } } impl Write for TcpStream { fn write(&mut self, buf: &[u8]) -> io::Result { self.io.write(buf) } fn flush(&mut self) -> io::Result<()> { Ok(()) } } impl AsyncRead for TcpStream { unsafe fn prepare_uninitialized_buffer(&self, _: &mut [u8]) -> bool { false } fn read_buf(&mut self, buf: &mut B) -> Poll { <&TcpStream>::read_buf(&mut &*self, buf) } } impl AsyncWrite for TcpStream { fn shutdown(&mut self) -> Poll<(), io::Error> { <&TcpStream>::shutdown(&mut &*self) } fn write_buf(&mut self, buf: &mut B) -> Poll { <&TcpStream>::write_buf(&mut &*self, buf) } } // ===== impl Read / Write for &'a ===== impl<'a> Read for &'a TcpStream { fn read(&mut self, buf: &mut [u8]) -> io::Result { (&self.io).read(buf) } } impl<'a> Write for &'a TcpStream { fn write(&mut self, buf: &[u8]) -> io::Result { (&self.io).write(buf) } fn flush(&mut self) -> io::Result<()> { (&self.io).flush() } } impl<'a> AsyncRead for &'a TcpStream { unsafe fn prepare_uninitialized_buffer(&self, _: &mut [u8]) -> bool { false } fn read_buf(&mut self, buf: &mut B) -> Poll { if let Async::NotReady = self.io.poll_read_ready(mio::Ready::readable())? { return Ok(Async::NotReady) } let r = unsafe { // The `IoVec` type can't have a 0-length size, so we create a bunch // of dummy versions on the stack with 1 length which we'll quickly // overwrite. let b1: &mut [u8] = &mut [0]; let b2: &mut [u8] = &mut [0]; let b3: &mut [u8] = &mut [0]; let b4: &mut [u8] = &mut [0]; let b5: &mut [u8] = &mut [0]; let b6: &mut [u8] = &mut [0]; let b7: &mut [u8] = &mut [0]; let b8: &mut [u8] = &mut [0]; let b9: &mut [u8] = &mut [0]; let b10: &mut [u8] = &mut [0]; let b11: &mut [u8] = &mut [0]; let b12: &mut [u8] = &mut [0]; let b13: &mut [u8] = &mut [0]; let b14: &mut [u8] = &mut [0]; let b15: &mut [u8] = &mut [0]; let b16: &mut [u8] = &mut [0]; let mut bufs: [&mut IoVec; 16] = [ b1.into(), b2.into(), b3.into(), b4.into(), b5.into(), b6.into(), b7.into(), b8.into(), b9.into(), b10.into(), b11.into(), b12.into(), b13.into(), b14.into(), b15.into(), b16.into(), ]; let n = buf.bytes_vec_mut(&mut bufs); self.io.get_ref().read_bufs(&mut bufs[..n]) }; match r { Ok(n) => { unsafe { buf.advance_mut(n); } Ok(Async::Ready(n)) } Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { self.io.clear_read_ready(mio::Ready::readable())?; Ok(Async::NotReady) } Err(e) => Err(e), } } } impl<'a> AsyncWrite for &'a TcpStream { fn shutdown(&mut self) -> Poll<(), io::Error> { Ok(().into()) } fn write_buf(&mut self, buf: &mut B) -> Poll { if let Async::NotReady = self.io.poll_write_ready()? { return Ok(Async::NotReady) } let r = { // The `IoVec` type can't have a zero-length size, so create a dummy // version from a 1-length slice which we'll overwrite with the // `bytes_vec` method. static DUMMY: &[u8] = &[0]; let iovec = <&IoVec>::from(DUMMY); let mut bufs = [iovec; 64]; let n = buf.bytes_vec(&mut bufs); self.io.get_ref().write_bufs(&bufs[..n]) }; match r { Ok(n) => { buf.advance(n); Ok(Async::Ready(n)) } Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { self.io.clear_write_ready()?; Ok(Async::NotReady) } Err(e) => Err(e), } } } impl fmt::Debug for TcpStream { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.io.get_ref().fmt(f) } } impl Future for ConnectFuture { type Item = TcpStream; type Error = io::Error; fn poll(&mut self) -> Poll { self.inner.poll() } } impl ConnectFutureState { fn poll_inner(&mut self, f: F) -> Poll where F: FnOnce(&mut PollEvented) -> Poll { { let stream = match *self { ConnectFutureState::Waiting(ref mut s) => s, ConnectFutureState::Error(_) => { let e = match mem::replace(self, ConnectFutureState::Empty) { ConnectFutureState::Error(e) => e, _ => panic!(), }; return Err(e) } ConnectFutureState::Empty => panic!("can't poll TCP stream twice"), }; // Once we've connected, wait for the stream to be writable as // that's when the actual connection has been initiated. Once we're // writable we check for `take_socket_error` to see if the connect // actually hit an error or not. // // If all that succeeded then we ship everything on up. if let Async::NotReady = f(&mut stream.io)? { return Ok(Async::NotReady) } if let Some(e) = try!(stream.io.get_ref().take_error()) { return Err(e) } } match mem::replace(self, ConnectFutureState::Empty) { ConnectFutureState::Waiting(stream) => Ok(Async::Ready(stream)), _ => panic!(), } } } impl Future for ConnectFutureState { type Item = TcpStream; type Error = io::Error; fn poll(&mut self) -> Poll { self.poll_inner(|io| io.poll_write_ready()) } } #[cfg(unix)] mod sys { use std::os::unix::prelude::*; use super::TcpStream; impl AsRawFd for TcpStream { fn as_raw_fd(&self) -> RawFd { self.io.get_ref().as_raw_fd() } } } #[cfg(windows)] mod sys { // TODO: let's land these upstream with mio and then we can add them here. // // use std::os::windows::prelude::*; // use super::TcpStream; // // impl AsRawHandle for TcpStream { // fn as_raw_handle(&self) -> RawHandle { // self.io.get_ref().as_raw_handle() // } // } } tokio-tcp-0.1.3/tests/chain.rs010064400007650000024000000024201337762053300144440ustar0000000000000000extern crate futures; extern crate tokio_tcp; extern crate tokio_io; use std::net::TcpStream; use std::thread; use std::io::{Write, Read}; use futures::Future; use futures::stream::Stream; use tokio_io::io::read_to_end; use tokio_tcp::TcpListener; macro_rules! t { ($e:expr) => (match $e { Ok(e) => e, Err(e) => panic!("{} failed with {:?}", stringify!($e), e), }) } #[test] fn chain_clients() { let srv = t!(TcpListener::bind(&t!("127.0.0.1:0".parse()))); let addr = t!(srv.local_addr()); let t = thread::spawn(move || { let mut s1 = TcpStream::connect(&addr).unwrap(); s1.write_all(b"foo ").unwrap(); let mut s2 = TcpStream::connect(&addr).unwrap(); s2.write_all(b"bar ").unwrap(); let mut s3 = TcpStream::connect(&addr).unwrap(); s3.write_all(b"baz").unwrap(); }); let clients = srv.incoming().take(3); let copied = clients.collect().and_then(|clients| { let mut clients = clients.into_iter(); let a = clients.next().unwrap(); let b = clients.next().unwrap(); let c = clients.next().unwrap(); read_to_end(a.chain(b).chain(c), Vec::new()) }); let (_, data) = t!(copied.wait()); t.join().unwrap(); assert_eq!(data, b"foo bar baz"); } tokio-tcp-0.1.3/tests/echo.rs010064400007650000024000000024431337762053300143050ustar0000000000000000extern crate env_logger; extern crate futures; extern crate tokio_tcp; extern crate tokio_io; use std::io::{Read, Write}; use std::net::TcpStream; use std::thread; use futures::Future; use futures::stream::Stream; use tokio_tcp::TcpListener; use tokio_io::AsyncRead; use tokio_io::io::copy; macro_rules! t { ($e:expr) => (match $e { Ok(e) => e, Err(e) => panic!("{} failed with {:?}", stringify!($e), e), }) } #[test] fn echo_server() { drop(env_logger::try_init()); let srv = t!(TcpListener::bind(&t!("127.0.0.1:0".parse()))); let addr = t!(srv.local_addr()); let msg = "foo bar baz"; let t = thread::spawn(move || { let mut s = TcpStream::connect(&addr).unwrap(); for _i in 0..1024 { assert_eq!(t!(s.write(msg.as_bytes())), msg.len()); let mut buf = [0; 1024]; assert_eq!(t!(s.read(&mut buf)), msg.len()); assert_eq!(&buf[..msg.len()], msg.as_bytes()); } }); let clients = srv.incoming(); let client = clients.into_future().map(|e| e.0.unwrap()).map_err(|e| e.0); let halves = client.map(|s| s.split()); let copied = halves.and_then(|(a, b)| copy(a, b)); let (amt, _, _) = t!(copied.wait()); t.join().unwrap(); assert_eq!(amt, msg.len() as u64 * 1024); } tokio-tcp-0.1.3/tests/limit.rs010064400007650000024000000017531337762053300145100ustar0000000000000000extern crate futures; extern crate tokio_tcp; extern crate tokio_io; use std::net::TcpStream; use std::thread; use std::io::{Write, Read}; use futures::Future; use futures::stream::Stream; use tokio_io::io::read_to_end; use tokio_tcp::TcpListener; macro_rules! t { ($e:expr) => (match $e { Ok(e) => e, Err(e) => panic!("{} failed with {:?}", stringify!($e), e), }) } #[test] fn limit() { let srv = t!(TcpListener::bind(&t!("127.0.0.1:0".parse()))); let addr = t!(srv.local_addr()); let t = thread::spawn(move || { let mut s1 = TcpStream::connect(&addr).unwrap(); s1.write_all(b"foo bar baz").unwrap(); }); let clients = srv.incoming().take(1); let copied = clients.collect().and_then(|clients| { let mut clients = clients.into_iter(); let a = clients.next().unwrap(); read_to_end(a.take(4), Vec::new()) }); let (_, data) = t!(copied.wait()); t.join().unwrap(); assert_eq!(data, b"foo "); } tokio-tcp-0.1.3/tests/stream-buffered.rs010064400007650000024000000025471337762053300164470ustar0000000000000000extern crate env_logger; extern crate futures; extern crate tokio_tcp; extern crate tokio_io; use std::io::{Read, Write}; use std::net::TcpStream; use std::thread; use futures::Future; use futures::stream::Stream; use tokio_io::io::copy; use tokio_io::AsyncRead; use tokio_tcp::TcpListener; macro_rules! t { ($e:expr) => (match $e { Ok(e) => e, Err(e) => panic!("{} failed with {:?}", stringify!($e), e), }) } #[test] fn echo_server() { drop(env_logger::try_init()); let srv = t!(TcpListener::bind(&t!("127.0.0.1:0".parse()))); let addr = t!(srv.local_addr()); let t = thread::spawn(move || { let mut s1 = t!(TcpStream::connect(&addr)); let mut s2 = t!(TcpStream::connect(&addr)); let msg = b"foo"; assert_eq!(t!(s1.write(msg)), msg.len()); assert_eq!(t!(s2.write(msg)), msg.len()); let mut buf = [0; 1024]; assert_eq!(t!(s1.read(&mut buf)), msg.len()); assert_eq!(&buf[..msg.len()], msg); assert_eq!(t!(s2.read(&mut buf)), msg.len()); assert_eq!(&buf[..msg.len()], msg); }); let future = srv.incoming() .map(|s| s.split()) .map(|(a, b)| copy(a, b).map(|_| ())) .buffered(10) .take(2) .collect(); t!(future.wait()); t.join().unwrap(); } tokio-tcp-0.1.3/tests/tcp.rs010064400007650000024000000063501337762053300141560ustar0000000000000000extern crate env_logger; extern crate tokio_io; extern crate tokio_tcp; extern crate mio; extern crate futures; use std::{net, thread}; use std::sync::mpsc::channel; use futures::{Future, Stream}; use tokio_tcp::{TcpListener, TcpStream}; macro_rules! t { ($e:expr) => (match $e { Ok(e) => e, Err(e) => panic!("{} failed with {:?}", stringify!($e), e), }) } #[test] fn connect() { drop(env_logger::try_init()); let srv = t!(net::TcpListener::bind("127.0.0.1:0")); let addr = t!(srv.local_addr()); let t = thread::spawn(move || { t!(srv.accept()).0 }); let stream = TcpStream::connect(&addr); let mine = t!(stream.wait()); let theirs = t.join().unwrap(); assert_eq!(t!(mine.local_addr()), t!(theirs.peer_addr())); assert_eq!(t!(theirs.local_addr()), t!(mine.peer_addr())); } #[test] fn accept() { drop(env_logger::try_init()); let srv = t!(TcpListener::bind(&t!("127.0.0.1:0".parse()))); let addr = t!(srv.local_addr()); let (tx, rx) = channel(); let client = srv.incoming().map(move |t| { tx.send(()).unwrap(); t }).into_future().map_err(|e| e.0); assert!(rx.try_recv().is_err()); let t = thread::spawn(move || { net::TcpStream::connect(&addr).unwrap() }); let (mine, _remaining) = t!(client.wait()); let mine = mine.unwrap(); let theirs = t.join().unwrap(); assert_eq!(t!(mine.local_addr()), t!(theirs.peer_addr())); assert_eq!(t!(theirs.local_addr()), t!(mine.peer_addr())); } #[test] fn accept2() { drop(env_logger::try_init()); let srv = t!(TcpListener::bind(&t!("127.0.0.1:0".parse()))); let addr = t!(srv.local_addr()); let t = thread::spawn(move || { net::TcpStream::connect(&addr).unwrap() }); let (tx, rx) = channel(); let client = srv.incoming().map(move |t| { tx.send(()).unwrap(); t }).into_future().map_err(|e| e.0); assert!(rx.try_recv().is_err()); let (mine, _remaining) = t!(client.wait()); mine.unwrap(); t.join().unwrap(); } #[cfg(unix)] mod unix { use tokio_tcp::TcpStream; use env_logger; use futures::{Future, future}; use mio::unix::UnixReady; use tokio_io::AsyncRead; use std::io::Write; use std::{net, thread}; use std::time::Duration; #[test] fn poll_hup() { drop(env_logger::try_init()); let srv = t!(net::TcpListener::bind("127.0.0.1:0")); let addr = t!(srv.local_addr()); let t = thread::spawn(move || { let mut client = t!(srv.accept()).0; client.write(b"hello world").unwrap(); thread::sleep(Duration::from_millis(200)); }); let mut stream = t!(TcpStream::connect(&addr).wait()); // Poll for HUP before reading. future::poll_fn(|| { stream.poll_read_ready(UnixReady::hup().into()) }).wait().unwrap(); // Same for write half future::poll_fn(|| { stream.poll_write_ready() }).wait().unwrap(); let mut buf = vec![0; 11]; // Read the data future::poll_fn(|| { stream.poll_read(&mut buf) }).wait().unwrap(); assert_eq!(b"hello world", &buf[..]); t.join().unwrap(); } } tokio-tcp-0.1.3/.cargo_vcs_info.json0000644000000001120000000000000127770ustar00{ "git": { "sha1": "25e835c5b7e2cfeb9c22b1fd576844f6814a9477" } }